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The effect of an environment on ultrafast predissociation processes is modeled in terms of a Markovian,
Lindblad-type master equation in the coordinate representation. The analysis focuses on the effects of
vibrational and electronic dephasing on one hand and “indirect”, environment-induced electronic transitions
on the other hand. The latter not only exert a quenching effect on coherent curve-crossing dynamics, as
shown for a system exhibiting periodic Landau-Zener-type crossings, but may largely determine the dynamics
if the system features no intrinsic electronic coupling. This provides a simplified description, restricted to
the Markovian limit, for purely environment-induced processes such as the predissociation of I2 in its B0u

+

state. Numerical integration of the coordinate-space master equation is performed by a split-propagator
technique. The problem of defining absorbing boundaries is solved by introducing an emission process,
localized around the grid boundary, to an auxiliary state that is otherwise not involved in the dynamics.

1. Introduction
A number of recent time-resolved experiments have addressed

the study of ultrafast predissociation phenomena in a condensed-
phase or cluster environment. Notably, a detailed investigation
of the solvent-induced predissociation of I2 in a rare-gas
environment has been carried out by Zewail and co-workers.1,2

Further studies on this system include earlier work by Scherer
et al.,3 as well as recent experiments by Apkarian and co-workers
in cryogenic matrixes4 and by Chergui and co-workers for a
liquid environment.5 The recent investigation, by Kiefer and
co-workers,6 of the predissociation of NaI in a rare-gas
surrounding complements earlier gas-phase studies7,8 of this
prototype system. Typically, the results of these experiments
feature a stepwise depletion of the initially populated electronic
state, possibly with nonexponential decay behavior at high
pressures. Ultrafast curve-crossing dynamics in a many-body
environment has further been studied for systems such as ICN,
whose early-time dynamics involves dissociation via several
potential surfaces,9 as well as in biochemical systems, in
particular the photoisomerization of rhodopsin10 and the primary
electron-transfer step in photosynthesis.11

Theoretical accounts of curve-crossing dynamics in the
presence of an environment essentially follow two types of
approaches. The first refers to a description, mostly of (semi)-
classical nature, of the combined molecule-plus-environment
system, which may amount to a collision model or scattering
calculation to describe a dilute-gas situation, or a molecular-
dynamics simulation to capture a liquid-state environment. An
example of the former is given by the recent analysis of the
predissociation of NaI by Engel and co-workers,12 while
semiclassical many-body simulations involving several elec-
tronic surfaces have been proposed by Coker and co-workers,13

Jungwirth and Gerber,14Martens and co-workers,15 and Levine
and Fleming and co-workers16 to describe the dynamics of I2.
The reliability of such studies is limited, on one hand, by the
accuracy of the many-body potential-energy surfaces which are
generally of semiempirical type and, on the other hand, by the

semiclassical character of the dynamics. Even if a semiclassical
approximation yields very good results for the dynamics of
heavy-atom systems such as I2 on a single Born-Oppenheimer
surface, it is more difficult to capture the quantum coherence
that is characteristic of curve-crossing situations.
The second avenue is given by the “reduced dynamics”

approach, involving a master equation17,18 that represents an
equation of motion for the subsystem of interest (e.g., the
diatomic molecule) while incorporating the effects of the
environment. In the simplest case, the master-equation treatment
amounts to introducing phenomenological relaxation and dephas-
ing constants, while the most complete treatment involves a
“memory kernel” that fully takes into account the combined
dynamics of the system and environment. Rate equations, which
provide a connection to the phenomenological treatment, emerge
from the master equation in the Markovian limit,17-19 which
implies that the environmental fluctuations occur on a time scale
that is very rapid as compared with the “system” dynamics.
Markovian master equations have recently been applied to curve-
crossing situations by a number of authors.20-25 These studies
highlight the role of vibrational coherence in the short-time
dynamics, which precludes a conventional treatment of the
nonadiabatic dynamics in terms of the rate expressions well
known from the theory of electron transfer.26-30 The reduced-
dynamics approach offers the advantage of an accurate quantum-
mechanical treatment of the subsystem of interest. Its short-
comings lie in losing the details of system-environment
correlations on short time scales, which are well captured by
simulations of the overall system.
Most of the above-mentioned studies based on the master

equation refer to discrete vibrational basis sets, which may be
handled analytically in the case of harmonic potentials.22 Such
basis sets are not suitable for dissociative systems, where a
coordinate-space representation or a phase-space representation
in terms of Wigner functions24,31 is more adequate. The latter
approach has very recently been applied to a curve-crossing
problem by Tanimura and Maruyama,32 and relatedly, a clas-
sical-limit formulation was proposed by Basilevsky and Voro-
nin.25 The present work takes an approach based on the
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coordinate-space representation, using a numerical short-time
(“split-propagator”) propagation scheme. This represents an
alternative to the global coordinate-space propagators which
have been applied in a number of works by Kosloff and co-
workers.33-37

We investigate the predissociation dynamics of an electronic
two-state system, using a Markovian master equation of
semigroup type.19,38-40 To motivate the form of certain elements
of the master equation, we build a bridge to another formulation
of the Markovian master equation, in terms of Redfield
theory.18,41-43 The physical effects we focus upon are “indirect”,
i.e., fluctuation-induced, transitions between the electronic states,
as well as vibrational and electronic dephasing. The problem
of defining “absorbing boundaries” to prevent reflection effects
due to the finite extension of the coordinate-space grid is solved
by introducing a “spontaneous emission” process localized in
coordinate space, such that a complete damping of the density
matrix elements takes place close to the grid boundary.
This model for the electronic two-state system allows us to

study the competition between coherent and incoherent, i.e.,
fluctuation-induced, mechanisms of electronic coupling, as well
as the role of dephasing. Several scenarios are studied, one of
which corresponds to periodic Landau-Zener-type crossings
similar to those observed for NaI,6-8 while another represents
an example of purely “incoherent” electronic coupling. The
latter leads to environment-induced electronic transitions in the
Markovian-limit dynamics and will be shown to provide a model
approach to the solvent-induced predissociation of I2. Notice
here that the Markovian limit represents the most extreme case
as far as destruction of coherent dynamicsscharacteristic of
wavepacket dynamics in the isolated systemsis concerned. A
more realistic description, allowing for similar time scales of
system and environment evolution, will tend to conserve
coherence on a longer time scale. Such non-Markovian
approaches have recently been pursued by Tanimura and
Murayama32 as well as Coalson and co-workers.28 However,
the Markovian treatment provides a convenient description in
terms of energy relaxation (“T1 -type” process) and phase, or
coherence, relaxation (“T2 -type” process). Such classification
gives a useful guideline for the description of the dynamics,
even though a non-Markovian treatment may eventually be
required.
The plan of the paper is as follows. Section 2 gives a short

description of the system and specifies the interaction with the
environment. Section 3 introduces the Markovian master
equation used in this work. In section 4, we point out the
relevance, in the context of the reduced dynamics treatment, of
the complex eigenvalues of the Liouvillian. Here, we also
discuss the relation of our results to the spectroscopic signal,
in the impulsive limit. Section 5 gives a description of the
numerical method, and section 6 proposes results for several
model situations. The last section gives a short discussion and
conclusion.

2. System Hamiltonian and System-Bath Interaction

We consider a predissociation process for a diatomic molecule
embedded in an environment. For simplicity, we restrict the
treatment to two electronic states, one of which is dissociative.
The Hamiltonian for the isolated molecule may be represented
as a matrix in the basis of electronic states{|nS〉},

where the kinetic and potential operators on the rhs act only on
the nuclear wave functions. The system-environment interac-
tion, in the same basis, takes the general form

where{rS, rB} collectively denote the nuclear coordinates of
the molecule and the environment, respectively. (In the present
context, we do not need to consider explicitly the electronic
degrees of freedom for the environment species, which are
assumed to remain in their electronic ground state|n0B〉. In
principle, the interaction Hamiltonian should be formulated for
an antisymmetrized direct-product basis of electronic states
A{|nS〉〈mS|X|n0B〉〈n0

B|}, whereA is the antisymmetrizer which
guarantees that the electrons of the combined molecule-plus-
environment system obey fermion exchange symmetry.) We
will choose as the “system” coordinaterS the internuclear
distance in the diatomic molecule, whilerB denotes all relative
coordinates between the diatomic and the environment species.
The electronic basis states{|nS〉} may be chosen to correspond
to the diabatic or adiabatic representation (see below). The
kinetic-energy operatorT̂S refers to the nuclear kinetic energy
throughout and may have off-diagonal elements depending on
the chosen representation.
The numerical calculations presented in this paper are carried

out in the diabatic representation for the two-state Hamiltonian
of the diatomic molecule, withT̂S being diagonal in the
electronic states,T̂nm

S ) -p2∆r/(2µ) δnmwith the reduced mass
µ and the Laplacian∆r, while off-diagonal potential couplings,
V̂nm
S (rS), may occur. These diabatic coupling matrix elements

may be due to spin-orbit interaction or other system-intrinsic
couplings, or possibly to an average coupling due to the
environment, within a “reduced dynamics” description.17 (No-
tice that the diabatic basis is defined here in a loose sense; for
a discussion of this issue, see, for example, refs 44 and 46.) On
diagonalization of the potential-energy part, the Born-Oppen-
heimer or adiabatic potential-energy surfaces are obtained, with
V̂nm
S (rS) ) V̂nm

S (rS) δnm. These may feature, in particular,
avoided crossings due to the off-diagonal matrix elements of
the diabatic representation. In the adiabatic representation, off-
diagonal terms occur in the kinetic-energy part, which involve
first and second derivatives in the nuclear coordinates. For an
electronic two-level system and a single nuclear coordinaterS,
the two representations are related by the unitary transformation

where tanθ(rS) ) -2V12(rS)/[V11(rS) - V22(rS)], with the matrix
elements defined with respect to the diabatic representation. The
parameterθ may be chosen in the range [0,π] such that the
labeling of the diabatic and corresponding adiabatic states
coincides asymptotically. Starting from the calculation in the
diabatic representation, we may derive the corresponding
quantities in the adiabatic representation using the above
transformation. Notice that the diabatic representation is often
more convenient for numerical implementation since the deriva-
tive couplings pertaining to the adiabatic representation are in
general rapidly varying functions of the nuclear coordinates.44

For a similar reason, certain observable quantities may be related
to the diabatic rather than the adiabatic representation, as pointed
out by Domcke and co-workers.44,45

The interaction with the environment comprises, in the general
case, diagonal and off-diagonal matrix elementsĥnm

SB(rS, rB).
ĤS ) ∑

n,m)1,2
[T̂nm

S + V̂nm
S (rS)]|nS〉〈mS| (1)

ĤSB ) ∑
n,m)1,2

ĥnm
SB(rS, rB)|nS〉〈mS| (2)

U(rS) ) ( cosθ(rS)/2 sinθ(rS)/2
- sinθ(rS)/2 cosθ(rS)/2) (3)
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Fluctuations in an off-diagonal coupling elementĥnm
SB, n * m,

in the diabatic representation translate into fluctuations of the
energy gap (∆ ) 2|V12(rX)| at the crossing pointrX, for the
isolated molecule) in the adiabatic representation. The role of
the off-diagonal elements will be most conspicuous in cases
where the interaction with the environment breaks the symmetry
of the unperturbed system. For example, in a diatomic
molecule, two states of different parity are allowed to cross in
the isolated molecule, while the symmetry-breaking due to the
environment generates off-diagonal coupling elements. In this
particular case, where the system features no intrinsic coupling
that may induce curve-crossing dynamics, such environment-
induced couplings can have a dominant effect on the time
evolution. In this context, the solvent-induced predissociation
of I2 provides an example that has been extensively discussed
in the recent literature.1-5 The role of such off-diagonal
couplings has further been considered in physical situations such
as collisions between atomic species47,48 and interactions
between atoms and surfaces.49 In the present analysis, we will
consider cases where such couplings give rise to “relaxation-
like” effects, that is, in the limit of rapid environmental
fluctuations that induce transitions between the electronic states
of the diatomic molecule. Such effects are closely related to
the effects of spontaneous emission that have recently been
discussed in the context of curve-crossing situations in quantum
optics.50-52

3. Reduced Dynamics: Semigroup Treatment
3.1. General Considerations. The subsystem dynamics,

given by equations of motion for the reduced “system” density
operator F̂S ) TrB F̂, with the degrees of freedom of the
environment integrated out by the trace (TrB) operation, is
rigorously given in terms of the generalized master equation.17,53

While application of the latter may present a rather difficult
task, a number of simplified treatments exist that are based, in
particular, on the following assumptions: (i) A separation of
time scales exists for the “system” and “environment” evolution
(Markovian approximation), as implied by the conditionλτc ,
1, whereλ denotes the coupling strength associated with the
interaction HamiltonianĤSB, andτc is the correlation time for
the fluctuations in the environmental dynamics:17-19 Rapid
environmental fluctuations induce transitions in the “system”
whose intrinsic dynamics is much slower. (ii) The system-
bath interaction Hamiltonian, with its general form as given in
eq 2, factorizes in terms of “system” and “bath” operatorsŝnm(rS)
and b̂nm(rB) acting on the respective nuclear degrees of
freedom: ĤSB ) ∑n,m ŝnm(rS) b̂nm(rB)|nS〉〈mS|. Frequently, a
coupling bilinear in the system and bath coordinates (like in
the path integral approach54) or a quadratic form in the system
coordinate22,24 is assumed.
While the Markovian approximation is questionable for

systems that exhibit rapid “system” evolution in the presence
of an environment evolving on a similar time scalesi.e., the
typical case in ultrafast molecular dynamicssit is nevertheless
frequently applied, in view of the complexity of the non-
Markovian treatment. Two principal formulations of the
Markovian dynamics are currently being used: (i) the Redfield
equations,41 which are obtained by keeping terms up to second
order in the cumulant expansion of the generalized master
equation;18 (ii) semigroup methods,38-40 which bear a close
analogy to Redfield theory, but are explicitly constructed such
as to meet a positivity requirement on the reduced density
operator. The semigroup property implies that the time evolu-
tion can be determined from a differential equation (d/dt)F̂S )
LreducedF̂S, which has to preserve the properties of the density

operator, i.e., trace conservation and positivity. (In fact, the
positivity requirement is not necessarily met by a master
equation in the Markovian limit. For a discussion of the
physical origin of the violation of positivity, see the recent
discussion in refs 55 and 56.) The Redfield approach is
generally applied in the vibrational or vibronic eigenstate
representation42,43 and yields transition rates related to the
spectral density provided by the environmental fluctuations. The
semigroup treatment rather takes a semiphenomenological view
by introducing rate constants for different relaxation or dephas-
ing-type processes. The latter has been applied, in particular,
to density matrix propagation in the coordinate representation.33-37

Markovian reduced dynamics offers a convenient classifica-
tion of different processes and phenomena: in particular,
dephasing and energy relaxation processes are naturally distin-
guished. This neat distinction may not carry over to the non-
Markovian case. The inherent disadvantage of the Markovian
approach, basically due to the assumption of the separation of
“system” and “bath” time scales, is that the details of system-
bath correlations are essentially lost. Such correlations may
be especially important if the system evolves rapidly.
In the present work, we apply semigroup methods to the study

of predissociation processes of diatomic molecules embedded
in an environment. A representation of the density operator in
coordinate space is used, which is particularly suitable for the
treatment of dissociative dynamics. We center on the early-
time events in the excited-state dynamics and disregard the
dynamics due to the deformation of the solute potential by the
solvent, along with recombination effects. In the curve-crossing
dynamics, we distinguish the effects of “direct” (or coherent)
couplings and “indirect” (or incoherent) couplings due to the
environment and analyze their interference. In the simplest case,
successive Landau-Zener-type transitions, as encountered, for
example, in NaI,6-8 are found to be damped by the effects of
the indirect coupling. This effect bears a close analogy with
the effect of spontaneous emission on Landau-Zener transitions,
which has been recently investigated.50-52 Another scenario
relates to the indirect coupling inducing transitions between
electronic states in the absence of a direct coupling. We further
point to the role of vibrational and electronic coherence, which
can be associated with the spectrum of complex eigenvalues of
the Liouvillian that characterize the dynamics of the system.
3.2. Markovian Master Equation. The master equation

separates the temporal evolution of the reduced density operator,
F̂S ) TrB F̂, into a coherent and a dissipative part,

with the coherent part involving the HamiltonianĤS of eq 1,
which may include an average system-bath coupling,〈ĤSB〉,17

and the dissipative part chosen to correspond to the Lindblad
form,38,39

where theĈi may be Hermitian or non-Hermitian (typically,
level-shift) operators acting on the electronic and/or nuclear
degrees of freedom of the system.39,40 Notice that the symbol
L henceforth refers to the Liouvillian superoperator as well as
its representation in a particular basis. In the present context,

d
dt

F̂S ) LSF̂S + LdissF̂S (4)

LSF̂S ) - i
p
[ĤS, F̂S] (5)

LdissF̂S )
1

p2
∑
i

{ĈiF̂SĈi
† -

1

2
(Ĉi

†ĈiF̂S + F̂SĈi
†Ĉi)} (6)
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Ldiss comprises the following operators:

The ratesΓi may be functions of the “system” nuclear
coordinate operatorr̂ ) r̂S, in the same fashion as a potential
operator; for clarity, the coordinate argument is explicitly
indicated as an operator. The dephasing ratesΓnn,el andΓnn,vib

are chosen to be coordinate-independent, but the operators
associated with the latter are linear in the coordinate operator
r̂. The operatorsĈ12,el and Ĉ21,el interconnect the electronic
states 1 and 2.ĈX2,el refers to a numerical device that involves
a “spontaneous emission” process from the dissociative state
|2〉 to an auxiliary state|X〉. This device serves to implement
“absorbing boundaries” in the predissociation scenario under
study. In the following, the physical processes associated with
the above operators will be discussed in some detail.
1. “ Indirect” Electronic Transition Processes Mediated by

the EnVironment, Associated with Cˆ nm,el, n* m. Such processes
stem from the presence of off-diagonal coupling terms,ĥnm

SB

with n * m, in the system-bath interaction Hamiltonian of eq
2. In the present context, the transitions are assumed to be
driven by thermal fluctuations in the environment. Hence we
should expect such transitions to take place predominantly in
the vicinity of the (avoided) crossing. We assume here a
Lorentzian dependence of the transition rate on the coordinate-
dependent energy gap,Γel(r) ) Γ0/([∆V12(r)/λ]2 + 1), where
∆V12(r) ) (V11(r) - V22(r)), andλ is a parameter that defines
the width of the distribution (which may be associated with the
spectral density of the environment). The larger of the “up”
and “down” rates,Γ12(r) andΓ21(r), is identified withΓel(r),
while the other is adjusted according to the detailed-balance
condition

This type of coordinate-dependent rates associated with
Lindblad operators involving electronic transitions have been
recently applied by Saalfrank and Kosloff36 in the context of
photoinduced desorption processes on surfaces. The Appendix
gives an alternative approach to the problem, based on the
Redfield equations.41,18 The latter approach offers some physical
understanding of the coordinate dependence of the relaxation
operators, based on a simple model for the system-bath
interaction. A master equation is obtained that is similar but
not identical to the Lindblad form of eq 6 withĈ12,el andĈ21,el.
2. Electronic“Pure Dephasing” , Associated with Cˆ nn,el. This

process is related not to transitions between the electronic states

but to fluctuations in the energy of the individual electronic
states, which induce dephasing of electronic coherence. Notice
that the overall electronic dephasing effect is composed of
contributions due to both electronic transitions and “pure
dephasing” (by analogy with the relation betweenT1 andT2
for a two-level system, 1/T2 ) 1/(2T1) + 1/T2

f, whereT2
f is the

pure-dephasing constant).
3. Vibrational Dephasing, Associated with Cˆ nn,Vib. Since

vibrational dephasing, rather than vibrational energy relaxation,
often provides the dominant effect in short-time dynamics,57

we restrict the analysis to the dephasing effect. In the master
equation, the operatorĈnn,vib leads to the term-Γnn,vib(r - r′)2
Fnn(r, r′) for a given electronic state, which may be denoted
“fluctuation” or “diffusion” term.58-61 In the absence of the
associated friction terms,58-61 no energy relaxation takes place,
but the system approaches an infinite-temperature limit. (As
pointed out in ref 59, the dephasing term considered here yields
the simplest type of master equation for an oscillator that is
compatible with the Lindblad form, without, however, taking
into account energy dissipation.) In the present model, this does
not pose a problem, since the other mechanismss“indirect”
transitions and loss of density due to predissociationslead to
an overall loss of energy, possibly apart from a very short
transient phase.
Let us comment shortly on the form of the dephasing term.

It can be derived from the part of the system-bath Hamiltonian
diagonal in the electronic states, with a coupling bilinear in the
“system” and “bath” coordinates,ĥnm

SB(rS, rB) ) ∑iêi(r̂S - rS
0) ×

(r̂B
i - rB

i,0). This coupling is of the conventional form and can
be interpreted in terms of a Taylor expansion about the
equilibrium positionsrS

0 and rB
i,0 for coupled oscillators. The

parametersrn
0 associated withĈnn,vib then correspond torS

0 for a
given electronic state. The dephasing gives rise to the decay
of the coordinate-space coherencesFnn(r, r′), r * r′, with a
quadratic dependence on the distance|r - r′|. This implies
that “decoherence” first sets in at large distances. For wave-
packet motion, for example, one should estimate the effect of
the dephasing term on a scale|r - r′| pertaining to the width
of the wavepacket. Notice that the vibrational dephasing
operator, as defined here, also affects the electronic coherence
Fnm(r, r′), n * m (see below).
4. “Spontaneous Emission” to a Third, Auxiliary State|X〉,

Associated with Cˆ Xn,el. This represents a numerical device to
implement “absorbing boundaries” for the dissociative electronic
state involved in the predissociation process. Since we simulate
the dynamics on a finite coordinate-space grid, reflection and
wrap-around effects at the grid boundary introduce artifacts.62

The problem is solved here as follows: An emission process,
localized around the grid boundary with a suitable envelope
function, takes place from the dissociative electronic state|2〉
to a third state|X〉. The form of the Lindblad operatorĈX2,el

guarantees that both the population of the dissociative stateand
electronic coherences between the nonadiabatically coupled
states are damped efficiently (cf. the matrix representation of
the Liouvillian given below). The method effectively simulates
the dissociative (“Hilbert-space”) continuum in terms of a
dissipative (“Liouville-space”) continuum localized in coordinate
space. The numerical implementation is discussed further in
section 5.

3.3. Matrix Representation of the Liouvillian: The Roles of “Direct” and “Indirect” Coupling. The present section provides
a short discussion on the effects of “direct”, or coherent, coupling intrinsic to the system, and “indirect”, or environment-induced
coupling arising from the dissipative part of the Liouvillian. Since the matrix representation of the Liouvillian is best suited to
distinguish these effects, we give here the representation in the basis of (diabatic) electronic coherences and populations,{|1〉〈1|,

Ĉ12,el) |1〉〈2| xΓ12(r̂); Ĉ21,el) |2〉〈1|xΓ21(r̂)

Ĉ11,el) |1〉〈1|xΓ11,el; Ĉ22,el) |2〉〈2|xΓ22,el

Ĉ11,vib) |1〉〈1|xΓ11,vib(r̂ - r1
0);

Ĉ22,vib) |2〉〈2|xΓ22,Vib(r̂ - r2
0)

ĈX2,el) |X〉〈2|xΓX2(r̂) (7)

Γ12(r)

Γ21(r)
) exp(-

∆V12(r)
kT ) (8)
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|2〉〈2|, |X〉〈X|, |1〉〈2|, |2〉〈1|}. The population of the auxiliary state|X〉 is included since it allows one to consider the effect of the
operatorĈX2; notice that no electronic coherences arise involving this state. The coherent and dissipative parts of the Liouvillian
thus take the following matrix form:

From the form of the LiouvillianLS, it is evident that the
coupling elementsV12 ) V21 connect populations with coher-
ences, such that population transfer occurs as a second-order
process. In a semiclassical approximation, this leads to the
Landau-Zener formula63,64for the transition probability between
the two electronic states,P12

LZ ) exp[-2πV12
2 /(pV|F2 - F1|)],

whereV denotes the velocity of the classical particle (or average
velocity of the wavepacket), andFi ) (dVi/dr) are the slopes of
the diabatic potential curves at the crossing.
Conversely, the “indirect” coupling causes direct transfer

between the populations. Further, it acts as a quenching
mechanism on the electronic coherences, which may be
enhanced by the presence of “pure dephasing” due toΓnn,el as
well asΓnn,vib. Notice that the “spontaneous emission” process
associated with the operatorĈX2 also acts on the electronic
coherence.
The above form ofLdiss is equally valid for theadiabatic

electronic basis. In fact, if the system under investigation is of
adiabatic rather than diabatic character (i.e., involving a large

coupling constantV12 ), it may be more adequate to choose the
adiabatic basis for the dissipative part of the Liouvillian. Within
the short-time propagation scheme, a switch of basis between
the coherent and dissipative evolution steps is easily accom-
modated (see section 5). A substantial difference for the
dissipative evolution arises, in particular, if electronic dephasing
is considered: Since the transformation eq 3 converts adiabatic
populations into a linear combination of diabatic populations
and coherences, the latter will be strongly affected by a large
dephasing rateΓnn,el, which translates back into a decay of the
adiabatic populations.

4. Liouvillian Spectra and Observable Quantities

4.1. Coherent and Decay Dynamics: Complex Eigenval-
ues of the Liouvillian. Fundamentally, the time scales char-
acterizing the coherent and decay dynamics of the system can
be captured in terms of its resonances, i.e., metastable states
with finite lifetimes. For example, for an isolated molecule
undergoing predissociation, we may identify quasi-bound states

LS(r,r′) ) - i
p
×

Ldiss(r,r′) ) 1

p2
×
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coupled to a dissociation continuum. Such resonance states are
associated with complex energiesEn ) Enr - iΓn/2 that may
be identified by a number of different methods such as projection
operator techniques,66 complex scaling,67 and other numerical
techniques.68

In contrast to the above expression for the resonances in the
Hilbert-space description, the complex eigenvalues in the
Liouville-space description correspond to frequenciesωnm )
ωnm
r - iγnm. If we transpose the results for the isolated

molecule to the Liouville-space description, we haveωnm
r )

(Enr - Emr) andγnm ) (Γn + Γm)/2. If the interaction with an
environment is added, further decay processes arise, which
cannot be accommodated in a Hilbert-space description. Within
the reduced-dynamics description, i.e., for a LiouvillianL )
LS + Ldiss, we may consider the basis of eigenstates ofLS,

with the Liouville-space kets31 |φnφm〉〉 ) |φn〉〈φm|, given the
eigenstates|φn〉 of the HamiltonianĤS. Notice that a basis of
generalized eigenstates69,70 is required for a non-Hermitian
Hamiltonian or Liouvillian; however, in the present discussion,
we do not explicitly indicate the distinction between left and
right eigenvectors. Using the representation in terms of the
Liouville-space basis defined above, the following expression
for the Liouvillian including dissipation is obtained:

Diagonalization of the overall Liouvillian yields a new basis
|øj〉〉 with eigenvalues-i/p(ωj

r - iγj). Hence, we obtain for
the propagatorU(t,t0) ) exp[L (t - t0)],

whereθ(t, t0) is the Heaviside function imposing forward-time
propagation.
If we consider the time evolution of the system, starting from

an initial density operatorF̂(t0), we may infer the spectrum of
complex eigenvalues of the Liouvillian from the correlation
function

This correlation function is real and nonnegative, as can be seen
for pure states by noting thatC(t, t0) ) |〈ψ(t0) ψ(t)〉|2. The
extension to mixed statesF̂ ) ∑npn|ψn〉〈ψn| yields, in a similar
fashion,C(t, t0) ) ∑n,mpnpm|〈ψn(t0) ψm(t)〉|2. In section 6, we
will discuss numerical examples of Fourier transforms of
C(t, t0) yielding spectra that can be associated with the complex
eigenvalues of the Liouvillian. The spectra are structured if
discrete vibrational or vibronic transition frequencies are
involved and feature a broadening due to the decay ratesγj. In
principle, one may numerically extract the underlying resonances
from such spectra. We should generally expect that the

dissipative rates affect not only the decay but also the real parts
of the complex eigenfrequencies (see, for example, ref 40, where
examples referring to few-level systems are discussed).
In the context of the numerical analysis, we will split up the

above expression in terms of correlation functions for the
individual electronic populations or coherences,C(t, t0) )
∑n,mCnm(t, t0), with

where theF̂nm are operators only with respect to the nuclear
coordinates. This procedure may be useful to distinguish
between vibrational and electronic (or vibronic) coherence,
which may be associated with rather different frequenciesωj

in particular cases. For example, in curve-crossing systems that
are of strongly adiabatic character, i.e., with a relatively large
energy gap between the adiabatic electronic states, it may be
feasible to distinguish between the vibrational coherence
pertaining to a given electronic state and the vibronic coherence
that is the signature of the coupling between the electronic states
(see section 6.2.).
4.2. Observables and Quantities Characterizing the

Dynamics. This paper focuses on a description of the excited-
state dynamics, that is, on the time evolution of the density
operator on the two electronic surfaces involved in the curve-
crossing scenario. We monitor the correlation functions of eq
15 as well as the electronic populations and coherences in the
diabatic and adiabatic representations. The relevant quantities
are the norm for a given electronic state Trr{F̂nn(t)} )
∫dr Fnn(r, r; t), i.e., the integral over coordinate-space popula-
tions, as well as the quantities

with Trr{F̂mn(t) F̂nm(t)} ) ∫dr dr′ Fmn(r, r′; t) Fnm(r′, r; t). The
two expressions are equal only for a pure state. Further, one
may consider the expectation values of the coordinates and
momenta for the individual electronic states, Trr{x̂F̂nn} and Trr-
{p̂F̂nn}, which leads to a phase-space picture of the dynamics.
Since the numerical simulations presented here do not account

for the excitation and detection process pertaining to a pump-
probe-type experiment, the conclusions we may draw on the
spectroscopic signal are limited. However, the excited-state
density operator is of direct relevance to the signal in the
impulsive limit, i.e., assuming that the laser pulses have an
extremely short duration on the time scale of evolution under
the molecular Hamiltonian. Recent work by Domcke and
Stock44,45in the context of curve-crossing dynamics has shown
that the results pertaining to the impulsive limit are generally
in good agreement with exact calculations. Hence, the following
subsection gives a short account, following Tanimura and
Murayama,32 Mukamel and co-workers,31 and Domcke and
Stock,44 of the spectroscopic signal for pump-probe experi-
ments in the impulsive limit. Against this background, we
discuss the relevance to the experimental signal of the quantities
observed in our simulations. Besides the excited-state popula-
tions, electronic coherence between the nonadiabatically coupled
states is shown to contribute to the signal if both states have
nonvanishing dipole moments with respect to the state accessed
by the probe pulse.
4.2.1. Spectroscopic Signal: ImpulsiVe Limit. The central

quantity to be calculated in the context of a pump-probe
experiment is the time-dependent polarization of the sample

LS|φnφm〉〉 ) - i
p [ωnm

r - i
2
(Γn + Γm)] |φnφm〉〉 (11)

L ) ∑
n,m

|φnφm〉〉{-
i

p[ωnm
r -

i

2
(Γn + Γm)]}〈〈φnφm| +

∑
nm

∑
kl

|φnφm〉〉{Ldiss}nm,kl〈〈φkφl| (12)

U(t, t0) )

θ(t, t0)∑
j

|øj〉〉 exp{-
i

p
[ωj

r -iγj](t - t0)}〈〈øj| (13)

C(t, t0) ) Tr{F̂†(t0) F̂(t)} ) Tr{F̂(t0) F̂(t)}

) ∑
j

Fj
†(t0) Fj(t0) exp{-

i

p
[ωj

r - iγj](t - t0)} (14)

Cnm(t, t0) ) Trr{F̂mn(t0) F̂nm(t)} )

∫dr dr′Fmn(r, r′; t0) Fnm(r′, r; t) (15)

|Fnm|(t) ) [Trr{F̂mn(t) F̂nm(t)}]
1/2 (16)
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induced by the probe pulse,31,44which reads as follows in the
impulsive limit:32,44

with a phase factor exp(iΩ2τ) involving the carrier frequency
Ω2 of the probe pulse that is applied at timet ) τ, the dipole
moment operatorµ̂ep ) µ̂ep

+ + µ̂ep
- ) µep(|e〉〈p| + |p〉〈e|), and

the optical coherenceF̂ep(t). Here |e〉 represents the excited
electronic state the evolution of which is to be monitored by
the experiment, and|p〉 is the state accessed by the probe pulse.
The latter coincides with the ground state|g〉 for a stimulated-
emission process. In the above expression, the electromagnetic
fields pertaining to the pump and probe pulses have been set to
Epump(t) ) δ(t) andEprobe(t) ) δ(t - τ) for simplicity.
Different contributions to the optical coherenceF̂ep(t) may

be distinguished. One contribution arises from populationsF̂ee
that have previously evolved on the excited-state potential
energy surface:31,32,44

whereLmol refers to the molecular Liouvillian including dis-
sipation according to eq 4, but excluding the external field.
Another contribution, occurring along with stimulated emis-

sion in the case|p〉 ) |g〉 involves the part of the density operator
that has remained in the electronic ground state prior to the
probe pulse. This contribution is associated with a resonance
Raman process that reduces to simple probe absorption from
the stationary ground stateF̂gg in the impulsive limit:31,32,44

Still another contribution is to be expected for a curve-crossing
scenario, in the case where both electronic states involved (|e〉
and |f〉) have nonvanishing dipole momentsµ̂ep and µ̂fp with
respect to the state|p〉:

The latter contribution can be understood as arising from
coherence transferbetween the electronic coherenceF̂ef, gener-
ated by the coherent coupling between the states|e〉 and |f〉,
and the coherenceF̂ep detected by the probe pulse. This
contribution accompanies the “direct” one involving
[F̂ff(τ)µ̂fp

+], which is analogous to eq 18. These terms should
be relevant if the probe field is nearly resonant with both states.
The contribution of eq 20 apparently has not been considered
in the literature so far.
All of the above contributions to the optical coherenceF̂ep(t)

of course carry vibrational (or vibronic) populations and
coherences. Since these can be characterized in terms of the
complex eigenvalues of the Liouvillian, as shown in the
preceding section, the Liouvillian spectrum eventually underlies
the observable structures in a frequency-resolved pump-probe
signal.
As pointed out by Domcke and Stock,44 the diabatic, rather

than adiabatic, populations are relevant to the observed signal,
as may be inferred from a derivation using the Condon
approximation.

5. Numerical Method

The present work uses a short-time propagation scheme for
the numerical integration of the master equation, eq 4, in the

coordinate representation. Since we do not consider the
interaction with the electromagnetic field, the propagator is time-
independent (but notice that the short-time propagation scheme
can be easily extended to a time-dependent propagator),

with Lcoh ) LS and Ldiss given by eq 10 in the coordinate
representation. A “split-propagator” scheme is used, according
to which72,73

which is valid in Liouville space like for ordinary Hilbert-
space operators. The component propagators are given
by Ucoh(τ) ) exp{Lcohτ} ) exp{ - i/p(u + V )τ} andUdiss(τ)
) exp{Ldissτ}. The coherent propagator is further split up,
according to the same procedure:

with Ukin(τ) ) exp(- i/puτ) andUpot(τ) ) exp(- i/pV τ).
This is entirely analogous to the Hilbert-space procedure first
proposed by Feit, Fleck, and Steiger.72,73 The first application
to density operator propagation in coordinate space was given
by Hellsing and Metiu.74

Numerically, the overall propagation is thus composed of the
following sequence:

where

with the possibility of introducing different time spacings for
the potential/kinetic and coherent/relaxation parts of the propa-
gator. This is convenient in cases where the higher-order
commutator terms, which are neglected by the propagation
method, are of greater importance (hence requiring smaller time
steps) for the coherent as compared with the dissipative
propagation steps.
The individual terms are calculated as follows, in the

coordinate and momentum representations, respectively. For
the potential-energy propagation step,

where bothV andG(r, r′) represent 2× 2 matrices in the basis
of diabatic electronic states. Exponentiation of the potential
matrix is carried out using the analytical expressions for a two-
level system, as proposed in ref 75. The kinetic-energy step is
performed in the momentum representation, in the same fashion
for both electronic states,

The propagators may be grouped together as suggested in ref
74.
Finally, the evolution step underLdiss is carried out in the

coordinate representation. The dissipative Liouvillian is set up

U(τ) ) exp{(Lcoh+ Ldiss)τ} (21)

U(τ) ) Ucoh(τ/2)Udiss(τ)Ucoh(τ/2)+ O(τ3) (22)

Ucoh(τ) ∼ Ukin(τ/2)Upot(τ) Ukin(τ/2) (23)

U(nτ) ∼ Ucoh(τ/2)[Udiss(τ) Ucoh(τ)]
nU coh

† (τ/2) (24)

Ucoh(τ) ) Ukin( τ
2m)[Upot( τm) Ukin( τm)]

m
U kin

† ( τ
2m) (25)

Upot(r, r′; τ) G(r, r′) )

exp(- i
p
V(r)τ) G(r, r′) exp( ipV(r′)τ) (26)

Ukin(k, k′; τ) Fnm(k, k′) )

exp(-ipk
2

2µ
τ) Fnm(k, k′) exp(ipk′22µ

τ) (27)

Pk2(t) ) Im[eiΩ2τ Tr{µ̂ep
- F̂ep(t)}] (17)

F̂ep
[ee](t) ) exp{Lmol(t - τ)} [F̂ee(τ)µ̂ep

+ ] (18)

F̂eg
[gg](t) ) exp{Lmol(t - τ)} [µ̂eg

+ Fgg] (19)

F̂ep
[ef](t) ) exp{Lmol(t - τ)} [F̂ef(τ)µ̂fp

+] (20)

4198 J. Phys. Chem. A, Vol. 102, No. 23, 1998 Burghardt



either in the diabatic or adiabatic representation, depending on
which is more appropriate for the problem to be studied. If the
adiabatic basis is chosen, the density operator is transformed
accordingly before and after the dissipative propagation step,
using the transformation eq 3. Alternatively, one might choose
to transform the dissipative Liouvillian matrix between the
adiabatic and diabatic representations.
The particular form of the dissipative Liouvillian of eq 10 is

diagonal in a given pair of coordinates (r, r′), which is due to
the fact that all of the Lindblad operators of eq 7 are local in
coordinates. Notice that, if vibrational “friction” terms were
to be included, this would no longer be the case, since those
terms involve the form [x̂, [p̂,F̂]+], where [ ]+ denotes an
anticommutator.58-61 In the particular case considered here, the
5× 5 Liouvillian matrixLdiss(r, r′) of eq 10 may be diagonalized
and exponentiated, such that exp{Ldiss(r, r′)τ} ) M†

exp{L diss
diag(r, r′)τ}M. In particular, the 3× 3 block involving

populations has to be diagonalized, while the 2× 2 block for
the coherences is already diagonal if the so-called nonsecular
terms are disregarded.
Since the auxiliary state|X〉 is included only in the dissipative

propagation step, it does not give rise to much additional
numerical effort. The coordinate dependence of the ratesΓX2(r)
may be chosen rather freely, for example, using a Gaussian
envelope centered on the grid boundary, with a half-width of
about 0.5a0. The principal requirement is that the coupling
strength is large enough to allow for a complete “emission”
once the coupling region is reached. By monitoring the norm
(Tr F) of the state|X〉 along with the norm of the other states,
one may numerically check on the conservation of the overall
population underLdiss. As may be inferred from the matrix
representation eq 10, the damping process due to the auxiliary
state affects not only the electronic population of the dissociative
state but also the electronic coherence between the states
involved in the curve-crossing. In fact, the decay of electronic
coherence has to be taken into account to assure the positivity
of the diagonal elements of the density matrix. In the present
model, where the other coherent and dissipative couplings are
localized in the curve-crossing region, correlations between the
“emission” process and the other interactions are not observed.
With the method described here, typical time intervals of∆t

) 0.5 fs were used. The commutator terms which are neglected
by the propagation scheme were calculated explicitly for this
time interval and were shown to lie 2 orders of magnitude below
the terms captured by the calculation. In fact, the propagation
scheme turns out to be very robust in that it yields qualitatively
correct results even if the commutator terms are nonnegligible.
With a coordinate-space grid of 256 points, typical overall
propagation times correspond to a few hours, on a workstation,
for a time evolution over 1 ps. This evidently puts a limitation
on the grid sizes that may be conveniently handled.
Finally, let us note that other ways of partitioning the overall

Liouvillian are possible within a short-time propagation scheme.
For example, the potential-energy part may be combined with
the dissipative part. For other recent applications of short-time
propagation schemes to density operator evolution, see refs 50,
51, 76, and 77.

6. Examples: Curve-Crossing with Dissipation

In the following, three different examples will be discussed
that illustrate the effects of the dissipative time evolution on
curve-crossing dynamics. The first example represents periodic
Landau-Zener-type crossings with an initial condition on the
upper adiabatic surface of the coupled potentials shown in Figure

1a. This situation closely resembles the one encountered in
systems such as NaI.6-8 The wavepacket shows recurrences
in the upper adiabatic state, which are gradually damped by
the loss of population each time the crossing is traversed. The
second example corresponds to the same potential energy
surfaces, but a different initial condition, which represents a
coherent superposition of the adiabatic states. This example
highlights the role of electronic, or vibronic, coherence. The
third case corresponds to a model potential for I2 (see Figure
1b), which has recently been applied in the analysis of the
solvent-induced predissociation of the B0u

+ state by Ben-Nun,
Levine, and Fleming.16 Here, we illustrate population transfer
due to the indirect electronic coupling, in the absence of any
coherent coupling. The example again shows a stepwise
depletion of the electronic state initially populated, very similarly
to the results obtained in the molecular dynamics approach by
Ben-Nun et al.16

Note that for all examples shown in the following, the reduced
mass of iodine was used in the calculations. Further, all
examples refer to a pure-state initial condition representing an
excited-state wavepacket. The potential coupling between the
diabatic states was chosen to be localized in space with a

Figure 1. Two model potentials used in the present work. (a) Diabatic
states are given by a Morse potential and an exponential form,
respectively. ForV1(r) ) D1[1 - exp(-â1(r - r10))]2, the parameters
are given byD1 ) 0.0463au, â1 ) 0.8975a0-1, r10 ) 5.716a0, while
for V2(r) ) A2 exp(-â2(r - r20)) + V20, the parameters areA2 ) 0.02992
au, â2 ) 2.1590a0-1, r20) 5.4235a0, andV20) 0.0189au. The diabatic
coupling is chosen asV12 ) V12

0 exp(-[(r - rX)/σ]2) with V12
0 ) 0.002

au, σ ) 0.3a0-1, andrX ) 6.825a0. (b) Here, the diabatic states model
the B(0u

+ 3∏) anda(1g 3∏) states of I2, with parameters adopted from
Ben-Nun et al.16 Notice that the dissociative potential features a very
shallow well with a minimum atr ) 8.48a0.

Markovian Master Equation J. Phys. Chem. A, Vol. 102, No. 23, 19984199



Gaussian envelope function. The detailed-balance condition eq
8 was applied forT ) 300 K.
6.1. Periodic Level Crossings.For the first example, with

an initial wavepacket localized at〈r0〉 ∼ 6.0 a0 on the upper
adiabatic potential surface of Figure 1a, the time evolution of
the integrated electronic populations and coherences in the
adiabatic and diabatic representations is shown in Figure 2. It
is clear that the adiabatic representation is more appropriate,
while a complete population transfer between the diabatic states
takes place each time the crossing is traversed. If we describe
the population transfer by a simple model for repeated Landau-
Zener-type transitions, we expect a stepwise exponential decay
of the upper-state population, given approximately by
exp[-PLZt/(T/2)] on stroboscopic monitoring at each half-period.
This is confirmed by Figure 3, which shows the integrated
population of the upper adiabatic state over an extended time
interval (5 ps). With a wavepacket period ofT∼ 325 fs in the
upper state, we obtain the Landau-Zener transition probability
PLZ ∼ 0.09. Figure 3 also shows the Hilbert-space correlation
function in the diabatic representation,|〈ψdi(t0) ψdi(t)〉|, which
is expected to trace out a decay envelope similar to the adiabatic
populations, given that the resonances in the upper adiabatic
state approximately decay with half-widthΓ ) PLZ/(T/2). (This
result may be derived semiclassically from the properties of

the complex periodic orbit that alternates between the two
surfaces.71) The Liouvillian correlation function is given by
C 22

di (t, t0) ) |〈ψ2
di(t0) ψ2

di(t)〉|2 for the isolated system. The
Fourier transform ofC 22

di (t, t0), shown in Figure 4, displays the
vibrational coherences in the upper adiabatic state. Even though
the generation ofelectroniccoherence is central to the time
evolution of the system, one does not observe discrete vibronic
energy differences in the spectrum since continuum states, rather
than bound states, of the lower adiabatic surface are involved.
The effects of dephasing and of “indirect” (environment-

induced) electronic transitions are shown in Figure 5. The
dissipative part of the Liouvillian has been calculated in the
adiabatic representation, which is most appropriate to the present
example. The decay constants are chosen to correspond to a
time scale shorter than the decay withΓ ) PLZ/(T/2), but longer
than the Landau-Zener time scaleτLZ ∼ 50 fs, which gives a
measure of the time interval the wavepacket spends in the

Figure 2. Time evolution of the integrated electronic populations and
coherences,|Fmn|(t) (see eq 16), for the first example system (see section
6.1.), without dissipation. The initial condition corresponds to a pure
state F(t0) ) |ψ(t0)〉〈ψ(t0)|, with |ψ(t0)〉 representing a Gaussian
wavepacket localized at〈r0〉 ) 6.0a0, with width at half-height fwhm
) 0.15 a0. (a) Electronic populations|Fnn(t)|, n ) 1, 2, equal to
Trr{Fnm(t)} for the pure-state case. Solid lines: adiabatic representation.
Dotted and dash-dotted lines: diabatic representation. (b) Electronic
coherences,|F12(t)| ) |F21(t)|. Solid line: adiabatic representation.
Dotted line: diabatic representation.

Figure 3. Same conditions as Figure 2. Upper solid line: integrated
population of the upper adiabatic state,|F22ad|(t). Dotted line: diabatic
wavepacket correlation function (absolute value),|〈ψ2

di(t0) ψ2
di(t)〉|.

Solid line: diabatic Liouvillian correlation functionC 22
di (t, t0) )

Trr{F22
di (t0) F22

di (t)}, which is equal to|〈ψ2
di(t0) ψ2

di(t)〉|2 for the pure-state
case considered here. Note that the numerical agreement obtained
between the wavepacket and density matrix calculations provides a
convenient verification of the latter.

Figure 4. Liouville-space and Hilbert-space spectra. The central part
of the figure shows the Fourier transform of the Liouvillian correlation
function C 22

di (t, t0) of the preceding figure. The Fourier transform is
symmetrical with respect to positive and negative frequencies, and only
the positive-frequency part is shown here. Inset: Fourier transform (real
part) of the wavepacket correlation function〈ψ2

di(t0) ψ2
di(t)〉. The

Liouvillian spectrum displays differences of the energies given in the
Hilbert-space spectrum.
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crossing region. This time scale is given byτLZ ) lLZ/V )
∆/V|F2 - F1|,50,64wherelLZ denotes the width of the crossing
region and∆ ) 2|V12(rX)| is the energy gap between the
adiabatic states. Figure 5 shows that the “indirect” transitions
lead to a rapid depletion of the upper adiabatic state, while the
lower state gains in population. Vibrational dephasing does not
substantially affect the decay of Trr{F22

ad(t)}. However, “pure
dephasing” of the electronic coherence that mediates the
Landau-Zener type transitions may slow down the decay.
6.2. Vibronic versus Vibrational Coherence. The second

example is chosen to illustrate under which circumstances
electronic coherence can be observed in terms of discrete
vibronic frequency components. The example refers to the same
potential energy surface as above, but the initial condition now
represents a coherent superposition of the adiabatic states
centered around〈r0〉 ) 6.8 a0, corresponding to an initial

condition on the upperdiabatic state in the region of strong
state mixing. (As an alternative to the diabatic initial condition,
one might choose a wavepacket in the adiabatic representation
that covers the corresponding bandwidth. This, however, entails
a strong participation of continuum states, which is avoided here
for ease of interpretation.)
Figure 6 shows the integrated adiabatic and diabatic popula-

tions and coherences, in an analogous fashion to Figure 2. The
state preparation is such that almost no perceptible decay occurs
for the upper electronic state. This is due to the fact that only
the lowest two vibrational levels of the upper-state manifold
are accessed, which decay much more slowly than the higher
vibrational levels that constitute the wavepacket of the first
example.71 From a semiclassical point of view, the upper-state
preparation chosen here imparts very little kinetic energy to the
wavepacket, which renders the semiclassical behavior strongly
adiabatic. Considering the diabatic representation, notice that
no complete swapping of populations takes place, as in the first
example; we rather observe Rabi-type oscillations, with fre-
quency components of the order of the electronic energy gap,
whenever the crossing is traversed.
Figure 7a shows the Liouvillian spectrum obtained by Fourier-

transforming the diabatic correlation functionC 22
di (t, t0), along

with the Hilbert-space spectrum. The contribution due to the

Figure 5. (a) Effects of “indirect” transitions on the population
dynamics of the upper adiabatic surface. (I) Population decay without
dissipation, reproduced from Figure 2. (II) Decay of|F22ad| and (II′) of
Trr{F22

ad} in the presence of environment-induced transitions. The
parametersΓ0 ) 0.000075 au andλ ) 0.01 au determine the envelope
function Γel(r) ) Γ0/([∆V12(r)/λ]2 + 1), from which the ratesΓ12(r)
andΓ21(r) are derived in accordance with the detailed-balance condition
eq 8. Note that|F22| ) Trr{F22} for a pure-state wavepacket as given
initially. (b) Effects of dephasing. (I) Dissipation-free case, as above.
(II),(II ′) Trr{F22

ad} and |F22ad|, respectively, for vibrational dephasing
with rates Γ11,vib ) Γ22,vib ) 0.02 au; r1

0 and r2
0 occurring in the

dephasing operators correspond to the equilibrium positions of the
adiabatic electronic states. The difference between|F22| and Tr{F22}
reflects the effect of “decoherence” that quickly destroys the initial
vibrational pure state. (III) Electronic “pure dephasing”, with rateΓ11,el

) Γ22,el ) 0.1 au, which quenches the Landau-Zener transitions and
thus slows down the decay of the population Trr{F22

ad} (Trr{F22
ad} =

|F22ad| here).

Figure 6. Time evolution of the integrated populations and coherences,
|Fmn|(t), for the second example system (see section 6.2.), without
dissipation. The initial conditions are again given in terms of a pure
state, which is now localized at〈r0〉 ) 6.8a0, with fwhm) 0.15a0, on
the dissociative diabatic surface, in the region of strong mixing between
the diabatic states. Hence, this state represents a coherent superposition
of electronic states in the adiabatic representation. (a) Populations|Fnn|,
n) 1,2. Dashed and dash-dotted lines: adiabatic representation. Solid
and dotted lines: diabatic representation. (b) Coherences|F12| ) |F21|.
Dotted line: adiabatic representation. Solid line: diabatic representation.
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Vibronic coherence is clearly separated in the high-frequency
part of the spectrum. This separation becomes even more
transparent on considering the Fourier transforms of the adiabatic
correlation functions,C ij

ad(t, t0) in Figure 7b. For an experi-
mental-state preparation similar to the one chosen here, vibronic
coherence should thus be observable. For recent discussions
on the issue of observability of electronic coherence, see refs
78 and 79. Figure 8 illustrates the effects of “indirect”
transitions versus vibrational dephasing on the Liouvillian
correlation functionC 22

di (t, t0). The former effect again leads
to a rapid depletion of the upper adiabatic state, whereas the
latter tends to preserve the upper state population while exerting
a damping on the vibrational (and electronic) coherence. Figure
9 shows the associated Liouvillian spectrum.
6.3. Environment-Induced Predissociation: Example I2.

The predissociation of I2 in its B0u
+ state has been subject to

extensive experimental and theoretical investigation over the
past few years. While the B state is very long-lived in the gas
phase, the predissociation process is found to be extremely rapid
in the condensed phase and in clusters. Scherer et al.,3 using

transient dichroism experiments, reported a decay within∼200
fs in liquid hexane, while Xu et al.5 concluded on the grounds
of resonance Raman experiments in CCl4 that the process was
even more rapid, on the order of 50 fs. Zewail and co-workers
undertook a series of detailed investigations aimed at capturing
the transition between gas-phase and liquid-phase dynamics.1

For Ar and Kr as solvents, coherently oscillating signals are
found at a pressure of 100 bar, but the coherence appears to be
strongly quenched at 400 bar. For Ne and He, by contrast, an
oscillatory transient signal persists for about 5 ps up to pressures
of 2000 bar. Experiments on cryogenic matrixes were per-
formed by Apkarian and co-workers,4 who observed very long-
lived coherent transients for I2 embedded in a Kr matrix.
A number of theoretical interpretations have been suggested

using, in particular, mixed quantum/classical approaches to the
simulation of the combined solute-plus-solvent system.13-16 By
contrast, a “reduced-dynamics” treatment has not been proposed
as yet. In this context, the purpose of the present contribution
is not to give a detailed master equation analysis of the
predissociation of I2, but rather to point out that the approach
presented here in principle accommodates the treatment of the
solvent-induced dynamics. Recall from section 3 that the
definition of the “indirect” electronic transitions is based on an

Figure 7. (a) Fourier transform of the Liouvillian correlation function
C 22

di (t, t0) for the system described in the preceding figure. The
correlation function (not shown here) was sampled over a time interval
of 5 ps and shows barely any decay over this interval. The Fourier
transform was obtained after suitable apodization. Inset: Hilbert-space
spectrum obtained from wavepacket propagation. Notice that the initial
condition samples the vibrational manifolds of both the upper and lower
adiabatic states. Therefore, vibronic coherence is clearly distinct in the
Liouvillian spectrum. (b) In contrast to part a, the Fourier transforms
of theadiabaticcorrelation functions are shown: (I) Fourier transform
of the correlation function for the lower adiabatic state,C 11

ad(t, t0); (II)
Fourier transform ofC 22

ad(t, t0); (III) Fourier transform ofC 12
ad(t, t0). I

and II display theVibrational coherence within the adiabatic electronic
states, while III displays theVibronic coherence in the adiabatic basis.

Figure 8. Liouvillian correlation functionsC 22
di (t, t0) in the presence

of “indirect” electronic transitions (solid line) and vibrational dephasing
(dashed line). The rates are constructed as described in Figure 5, with
Γ0 ) 0.0002au andΓ11,vib ) Γ22,vib ) 0.0001au. The decay of the
upper adiabatic state is barely accelerated by the dephasing effect, such
that oscillations persist for a much longer time than in the case where
“indirect” transitions are involved.

Figure 9. Fourier transform ofC 22
di (t, t0) for the dissipation-free case

(see Figure 7) as compared with the conditions of Figure 8 (both
environment-induced transitions and dephasing lead to a similar
“washing out” of the vibronic structure).
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interaction Hamiltonian which is off-diagonal in the electronic
states of the solute species. A detailed analysis, beyond the
parametrization used in the present context, would entail (i)
setting up the interaction Hamiltonian as a function of the
intermolecular (and intramolecular) coordinates, for several
dissociative states that intersect the B0u

+ potential, and (ii)
relaxing the Markovian assumption in the reduced-dynamics
treatment, since a separation of time scales between the “system”
and “bath” dynamics is not actually given. Thus, the present
treatment, which assumes that electronic transitions are induced
by rapid environmental fluctuations, can only offer a general
perspective on the problem.
The potential energy surfaces shown in Figure 1b, represent-

ing the B0u
+ and a1g states of iodine, are adopted from the

work by Ben-Nun et al.16 Figure 10 shows the integrated
electronic population of the upper adiabatic state, for different
values of the decay parameter associated with the “indirect”
electronic transitions. The initial condition corresponds to a
wavepacket centered on〈r0〉 ) 5.59 a0 on the bound diabatic

surface. The stepwise depletion of the initial state, as observed
in Figure 10, is in correspondence with the results by Ben-Nun
et al.16 In contrast to the preceding examples, no electronic
coherence is involved in the time evolution. Hence, a qualitative
description may not be given in terms of the Landau-Zener
model. (However, the Landau-Zener model may in principle
be extended to include an imaginary coupling term that accounts
for the indirect mechanism of population transfer.47-49)

7. Discussion and Conclusions

The examples given above all refer to cases where the decay
time scales are of the same order of magnitude, but somewhat
longer than the coherent time scales characterizing the wave-
packet motion, i.e., the wavepacket periodT ∼ 300 fs and the
Landau-Zener time scaleτLZ ∼ 50 fs (see the first example).
Hence, coherent motion is still observable, and the spectra
associated with the complex eigenvalues of the Liouvillian show
vibrational, or vibronic, structures. Notice that the frequency
components occurring in such spectra are in direct cor-
respondence with those observed in pump-probe spectra in the
impulsive limit, as discussed in section 4.2. It might be
interesting to extract explicitly the resonances underlying these
spectra, which should yield lifetimes in the femto- to picosecond
range. We have shown that in certain cases the vibrational and
vibronic contributions to the spectrum may be clearly separated.
The decay behavior observed in the above examples is not
generally exponential. The simulations show thatsas is to be
expectedsincoherent electronic transitions lead to a rapid
depletion of the upper electronic state, while electronic “pure
dephasing” may preserve the upper-state population for a longer
time. Note, though, that conservation of the upper-state
population may also be due to strong collisions that cause a
substantial vibrational energy loss, as shown in recent work by
Engel and co-workers on NaI.12 This type of effect is not
included in the present analysis.
The third example represents a simple model for environment-

induced transitions of dissipative character, for a model
representing the B0u

+ and a1g states of I2.16 The population
transfer via “indirect” transitions is very pronounced in this case
since the crossing occurs close to the minimum of the bound-
state potential well, which is very shallow. Recall that this
example does not involve any electronic coherence. A more
realistic treatment of this system, involving the investigation
of the coupling Hamiltonian and the treatment of non-Markovian
effects, is currently in progress in our group.
To summarize, the master equation approach presented in

this work gives a qualitative picture of the influence that a
dissipative environment may exert on a predissociation process.
We have focused on examples illustrating the role of dephasing
and of indirect (or incoherent) electronic coupling. The latter
effect has not been considered so far in the majority of studies
on curve-crossing processes including dissipation,20-24 but it is
related to recent investigations of the effect of spontaneous
emission on Landau-Zener-type transitions in quantum
optics.50-52 In the Markovian limit, the decay of coherences
and populations may be described by an appropriate param-
etrization, which is here accommodated in the framework of a
master equation of Lindblad type. The choice of parameters
reflects different time scales of evolution, which are fundamen-
tally associated with the decay modes given by the complex
eigenvalues of the Liouvillian. These should be compared with
the “semiclassical” time scales associated with wavepacket
motion to interpret the observations by time-resolved spectros-
copy. Notice that the length scales associated with the wave-

Figure 10. For the model potential of I2 (Figure 1b), the populations
of the diabatic states are shown, for nonvanishing effects of the
“indirect” electronic transitions. The initial condition again corresponds
to a pure state, localized at〈r0〉 ) 5.59a0, with a width fwhm) 0.15
a0. Notice that the dynamics does not involve any electronic coherence
in this case. (a) Population of the bound diabatic state, Trr{F11

di }, for
parametersΓ0 ) 0.00001 au (solid line),Γ0 ) 0.0001 au (dotted line),
Γ0 ) 0.001 au (dashed line), andΓ0 ) 0.01 au (dash-dotted line),
respectively. The parameter which determines the coordinate depen-
dence of the rates was chosen as above,λ ) 0.01 au. Notice that
Trr{F11

di } = |F11di | throughout. (b) Effects of vibrational dephasing. For
Γ0 ) 0.00001 au (I) andΓ0 ) 0.0001 au (II) of the preceding figure,
vibrational dephasing is added with ratesΓ11,vib ) Γ22,vib ) 0.002 au
(I′, II ′) show|F11di |, whileTrr{F11

di } is barely affected by dephasing. The
effect of “decoherence” is thus very similar to Figure 5b.
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packet are also important in defining vibrational dephasing in
the coordinate representation.
The numerical approach presented in this work is based on

a short-time propagation scheme that represents a viable
alternative to other density-matrix propagation methods in
coordinate space, in particular, the global propagation schemes
introduced by Kosloff and co-workers.33,34 The problem of
defining “absorbing boundaries” to avoid reflections due to the
finite extension of the coordinate-space grid has been solved
by introducing an emission process to an auxiliary state,
localized near the grid boundary. This method turns out to be
very robust and represents an alternative to the use of the Wigner
representation in defining the behavior of the density matrix at
the boundary.32

Finally, let us remark that a more microscopic treatment of
the ultrafast decay processes under consideration would entail
taking into account non-Markovian effects, which should capture
the actual solute-solvent dynamics that evolves between the
static (“inhomogeneous”) limit and the Markovian limit of rapid
fluctuations. It is planned to extend the present study to the
non-Markovian case, which should allow an interesting com-
parison with recent work by Tanimura and Murayama32 as well
as Coalson and co-workers.28
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Appendix. “Indirect” Transitions: Redfield Equations

In this Appendix, we consider a simple approach to the
“indirect” electronic transitions via the Redfield equations, i.e.,
using a master equation of the type

whereĤSB(-τ) is the Heisenberg operator,

and F̂B
ref is a reference state for the environment, usually

representing thermal equilibrium. We consider the following
interaction Hamiltonian:

whereŝ+ ) |2〉〈1| andŝ- ) |1〉〈2| represent level-shift operators
for the electronic levels of the molecule, whilean andan

† are
bosonic annihilation and creation operators for the bath which
is modeled in terms of a collection of harmonic oscillators,ĤB

) ∑nknan
†an. The “unperturbed” Hamiltonian is given byĤ0 )

ĤS + ĤB, and the associated LiouvillianL0 is defined accord-
ingly. The rotating-wave approximation is made here, implying
that only resonant terms contribute to the interaction.80

As an alternative form for the interaction Hamiltonian one
may chooseĤSB ) (ŝ+ + ŝ-)b̂(r inter), wherer inter collectively
denotes the relative coordinates between the diatomic and the
environment species. Note that both forms of the Hamiltonian
imply that fluctuations in the “bath” coordinatesr inter give rise
to electronic transitions via the level-shift operators for the
“system”. The two model Hamiltonians have in common their
independence of the vibrational coordinate of the diatomic, such
that vibrational dephasing and relaxation are disregarded in the
present considerations. In the following, we will focus on the
form of the Hamiltonian given in eq 30, since this form yields
the detailed-balance condition of eq 8 in the most transparent
fashion.
Substitution of eq 30 into eq 28 yields for the dissipative

part of the master equation

where the following relations for harmonic oscillators were
used: TrB{anan

† F̂B
eq} ) 1/[1 - exp(-âkn)] and TrB{an

†anF̂B
eq} )

1/[exp(âkn) - 1], with the equilibrium density operatorF̂B
eq )

exp(-âĤB)/∏n[1 - exp(-âkn)]-1, where the denominator
represents the partition function, andâ ) 1/(kT).18

While the evaluation of the Heisenberg operatorsŝ((-τ) is
straightforward in the representation of eigenstates of the
“system” Hamiltonian, it is more involved in the coordinate
representation. However, in the particular case we are consider-
ing, with the interaction Hamiltonian being independent of the
“system” nuclear coordinate, we can derive a simple result for
the Heisenberg operator, which depends only on the potential
energy gap between the two electronic states at a given
internuclear distancerS. We assume here thatĤS is diagonal
in the electronic states 1 and 2 (as well as in the kinetic-energy
contribution),

Hence, we have, for example, forŝ+ ) |2〉〈1|,

d
dt

F̂S ) LSF̂S + LdissF̂S

) - i
p
[ĤS, F̂S] -

1

p2
∫0∞dτ TrB{[ĤSB, [ĤSB(-τ), F̂B

refF̂S(t)]]} (28)

ĤSB(-τ) ) exp(L0τ)ĤSB

) exp(- i
p
Ĥ0τ)ĤSB exp( ipĤ0τ) (29)

ĤSB ) ∑
n

Vn(ŝ+an + ŝ-an
†) (30)

LdissF̂S ) -
1

p2
∫0∞ dτ ∑

n

Vn
2{ exp(-iknτ/p)

[1 - exp(-âkn)]

[ŝ+, ŝ-(-τ)F̂S] -
exp(iknτ/p)

[1 - exp(-âkn)]
[ŝ-, F̂Sŝ+(-τ)] -

exp(-iknτ/p)

[exp(âkn) - 1]
[ŝ+, F̂Sŝ-(-τ)] +

exp(iknτ/p)

[exp(âkn) - 1]
[ŝ-, ŝ+(-τ)F̂S]} (31)

ĤS ) ∑
n)1,2

ĥn(rS)|n〉〈n| ) ∑
n)1,2

{T̂n + V̂n(rS)}|n〉〈n| (32)
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and an analogous expression forŝ-(-τ). The relevant elements
of the Liouvillian propagator may be denoted “coherence Green
function”.31 To introduce the dependence on the electronic
energy gap,∆V12(rS) ) [V1(rS) - V2(rS)], the propagator for
the individual electronic states, exp(-(i/p)ĥnt), may be expressed
in terms of the propagator for a chosen reference Hamiltonian
ĥref (of the same structure as theĥn’s) and an interaction-frame
propagator involving∆Vn,ref(rS) ) [Vn(rS) - Vref(rS)],31

where “exp+” denotes the (positive) time-ordered exponential.
In particular, the Hamiltonianĥ1 (or, equivalently,ĥ2) may

be chosen as the reference Hamiltonian to yield, for example,
for an operator of the formĥ+ ) ĥnuc(rS)|2〉〈1|:

For the particular case of the operatorsŝ( considered above,
which do not depend on the nuclear coordinaterS, we simply
obtain

Since the time interval contributing to the integral over the
Markovian kernel of eq 28 is on the order of the correlation
time of the environment,τc (supposed to be substantially shorter
than the time scale of “system” evolution), we may approximate
∆V12(rS;t′) ∼ ∆V12(rS), such that

This expression is alocal operator in the coordinate representa-
tion, and hence, the Heisenberg operator occurring in the master
equation is local in coordinate space as well,ŝ+(-τ) ) ŝ+

exp[iτ∆V12(rS)/p]. The master equation thus reads

where the spectral densitiesJ12 andJ21 depend on the energy
gap at a given internuclear distancerS,

Here, the sum over bath oscillators was replaced by an integral
involving a strength function,∑nVn2 f g(k), and the time integral
was carried out formally,∫0∞dτ exp[-i(k - ∆V12(rS))τ/p] )
δ(k - ∆V12(rS)) + iP∫dk/(k - ∆V12(rS)), where the last term
represents a principal-value integral. For details of this
procedure, see, e.g., reference 18. Notice that the principal-
value term generates a frequency shift that is not taken into
consideration here. The ratio of the ratesJ12(rS) andJ21(rS)
yields the detailed-balance condition eq 8.

For the alternative choice of the interaction Hamiltonian,ĤSB

) (ŝ+ + ŝ-)b̂(r inter) (see above), it is convenient to consider the
classical-limit time correlation functionC(τ) ) 〈bcl(τ) bcl(0)〉,
the Fourier transform of which yields the distributiong(k). The
latter has to be supplemented by the thermal factors occurring
in eqs 31 and 39, to yield the correct ratio between “up” and
“down” rates. For an exponentially decaying correlation
function,C(τ) ∼ exp(-τ/τc), whereτc is the correlation time
of fluctuations in b(r inter), a Lorentzian spectral density is
obtained,g(k)∼ g0(1/τc)2/[k2 + (1/τc)2]. This is the form chosen
for the transition rates in the Lindblad form, withλ ) 1/τc (see
section 3.2).

If we equate the spectral densitiesJ12 andJ21 with the ratesΓ12 andΓ21 associated with the Lindblad operatorsĈ12,el andĈ21,el,
it turns out that the terms represented by∑i -(1/2)(Ĉi

†ĈiF̂S + F̂SĈi
†Ĉi) agree with the corresponding terms in the Redfield equations,

while those given by∑iĈiF̂SĈi
† disagree as far as the dependence onrS and r′S is concerned. The matrix representation of the

Redfield form is given by

Numerical implementation shows that the results given by the
Lindblad versus Redfield form are very similar, but slightly

negative values may indeed occur for the diagonal elements of
the density operator evolving according to the Redfield form.

ŝ+(-τ) ) [exp(LSτ)]21,21|2〉〈1|

) exp(- i
p
ĥ2τ)|2〉〈1| exp( ipĥ1τ) (33)

exp(- i
p
ĥnt) )

exp(- i
p
ĥreft) exp+[- i

p
∫0tdt′ ∆Vn,ref(rS; t′)] (34)

ĥ+(t) ) |2〉〈1| exp( ipĥ2t) ĥnuc(rS) exp(-
i
p
ĥ2t) ×

exp+[- i
p
∫0tdt′ ∆V12(rS; t′)] (35)

ŝ+(t) ) |2〉〈1| exp+[- i
p
∫0tdt′ ∆V12(rS; t′)] (36)

exp+[- i
p
∫0tdt′ ∆V12(rS; t′)]∼ exp[- i

p
t∆V12(rS)] (37)

LdissF̂S(rS, r′S) ) - 1

p2
{J12(rS)[ŝ+, ŝ-F̂S(rS, r′S)] -

J12(r′S)[ŝ-, F̂S(rS, r′S)ŝ+] - J21(r′S)[ŝ+, F̂S(rS, r′S)ŝ-] +

J21(rS)[ŝ-, ŝ+F̂S(rS, r′S)]} (38)

J12(rS) ) Re∫-∞∞dk g(k)

[1 - exp(-âk)]
×

∫0∞dτ exp(- i
p
[k- ∆V21(rS)]τ)

)
g(∆V21(rS))

[1 - exp(-â∆V21(rS))]

J21(rS) )
g(∆V21(rS))

[exp(â∆V21(rS)) - 1]
(39)

Ldiss(r, r′) ) 1

p2
× (-1

2
{J21(r) + J21(r′)}

1
2

{J12(r) + J12(r′)} 0 0

1
2
{J21(r) + J21(r′)} -1

2
{J12(r) + J12(r′)} 0 0

0 0 -1
2

{J21(r) + J12(r′)} 0

0 0 0 -1
2

{J21(r′) + J12(r)}
) (40)

Markovian Master Equation J. Phys. Chem. A, Vol. 102, No. 23, 19984205



Finally, recall that the interaction Hamiltonian of eq 30 takes
into account only the resonant interactions; that is, terms of the
form ŝ+an

† and ŝan have been omitted, in accordance with the
“rotating-wave approximation”.80,81 However, these “nonsecu-
lar” terms27,41,80-81 may be of importance if the unperturbed
states are separated by small energy differences. Hence, we
have included these terms in the master equation and conclude
from the numerical result that they do not have a substantial
influence on the time evolution of the systems considered here.
The nonsecular terms are not compatible with the Lindblad form
and, in fact, can yield “negative probabilities” in our simulations.
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(22) May, V.; Kühn, O.; Schreiber, M.J. Phys. Chem.1993, 97, 12591.
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