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Dynamics of Predissociation in the Condensed Phase: Markovian Master Equation
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The effect of an environment on ultrafast predissociation processes is modeled in terms of a Markovian,
Lindblad-type master equation in the coordinate representation. The analysis focuses on the effects of
vibrational and electronic dephasing on one hand and “indirect”, environment-induced electronic transitions
on the other hand. The latter not only exert a quenching effect on coherent curve-crossing dynamics, as
shown for a system exhibiting periodic Landafiener-type crossings, but may largely determine the dynamics

if the system features no intrinsic electronic coupling. This provides a simplified description, restricted to
the Markovian limit, for purely environment-induced processes such as the predissociatidn @$ IBO,

state. Numerical integration of the coordinate-space master equation is performed by a split-propagator
technique. The problem of defining absorbing boundaries is solved by introducing an emission process,
localized around the grid boundary, to an auxiliary state that is otherwise not involved in the dynamics.

1. Introduction semiclassical character of the dynamics. Even if a semiclassical
A number of recent time-resolved experiments have addressedapproximation yields very good results for the dynamics of
the study of ultrafast predissociation phenomena in a condensedheavy-atom systems such a®h a single Borr-Oppenheimer
phase or cluster environment. Notably, a detailed investigation surface, it is more difficult to capture the quantum coherence
of the solvent-induced predissociation of ih a rare-gas  that is characteristic of curve-crossing situations.
environment has been carried out by Zewail and co-workers. The second avenue is given by the “reduced dynamics”
Further studies on this system include earlier work by Scherer approach, involving a master equafi6# that represents an
etal.? as well as recent experiments by Apkarian and co-workers equation of motion for the subsystem of interest (e.g., the
in cryogenic matrixesand by Chergui and co-workers for a  diatomic molecule) while incorporating the effects of the
liquid environment. The recent investigation, by Kiefer and  environment. In the simplest case, the master-equation treatment
co-workers; of the predissociation of Nal in a rare-gas amounts to introducing phenomenological relaxation and dephas-
surrounding complements earlier gas-phase stG#lief this ing constants, while the most complete treatment involves a
prototype system. Typically, the results of these experiments “memory kernel” that fully takes into account the combined
feature a stepwise depletion of the initially populated electronic gynamics of the system and environment. Rate equations, which
state, possibly with nonexponential decay behavior at high provide a connection to the phenomenological treatment, emerge
pressures. Ultrafast curve-crossin.g dynamics in a many-bodyfrom the master equation in the Markovian lirfit® which
environment has further been studied for systems such as ICN,impjies that the environmental fluctuations occur on a time scale
whose early-time dynamics involves dissociation via several qat is very rapid as compared with the “system” dynamics.
potential surface$,as well as in biochemical systems, in  \jarkovian master equations have recently been applied to curve-
particular the photmsomerlzatlon of rhoqlopi@land the primary crossing situations by a number of auth#r25 These studies
electron-transfer step in photosyntheSis. o highlight the role of vibrational coherence in the short-time
Theoretical accounts of curve-crossing dynamics in the gynamics, which precludes a conventional treatment of the
presence of an environment essentially follow two types of nsnadiabatic dynamics in terms of the rate expressions well
apprqaches. The first refers t(_) a description, mostly qf (semi)- known from the theory of electron transfér3® The reduced-
classical nature, of the combined molecule-plus-environment dynamics approach offers the advantage of an accurate quantum-

system, which may amount to a collision model or scattering echanical treatment of the subsystem of interest. Its short-
calculation to describe a dilute-gas situation, or a molecular- comings lie in losing the details of systeranvironment

dynamics simulation to capture a liquid-state environment. An ., relations on short time scales, which are well captured by
example of the former is given by the recent analysis of the g 1ations of the overall system.

predissociation of Nal by Engel and co-workéfswhile Most of the above-mentioned studies based on the master

semiclassical many-body simulations involving several elec- - . S . .
tronic surfaces have been proposed by Coker and co-workers equation refer to discrete vibrational basis sets, which may be
" handled analytically in the case of harmonic potentidlSuch

Jungwirth and Gerbér, Martens and co-worker$,and Levine . : . L
basis sets are not suitable for dissociative systems, where a

and Fleming and co-workeélfsto describe the dynamics of. 1 _ . ;

The reliability of such studies is limited, on one hand, by the _coordlnate-sp_ace repres_entat?!?_n or a phase-space representation

accuracy of the many-body potential-energy surfaces which areln terms of Wigner functiorfé-*is more gdequate. The Iatter.
approach has very recently been applied to a curve-crossing

enerally of semiempirical type and, on the other hand, by the )
g y P P y problem by Tanimura and Maruyarfaand relatedly, a clas-

* Present address: Theoretische Chemie, Physikalisch-Chemisches In-Sical-limit formulation was proposed by Basilevsky and Voro-
stitut, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany. nin2> The present work takes an approach based on the
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coordinate-space representation, using a numerical short-timewhere the kinetic and potential operators on the rhs act only on
(“split-propagator”) propagation scheme. This represents anthe nuclear wave functions. The systeamvironment interac-
alternative to the global coordinate-space propagators whichtion, in the same basis, takes the general form
have been applied in a number of works by Kosloff and co- . .
workers33-37 Hsg = Z Aoe(r s, ) In°inY (2

We investigate the predissociation dynamics of an electronic nm=1,2

two-state systgrsnémusing a Markovian master equation of yyhere{rg, rg} collectively denote the nuclear coordinates of
semigroup typé?3*%° To motivate the form of certain elements  the molecule and the environment, respectively. (In the present
of the master equation, we build a bridge to another formulation ¢ontext, we do not need to consider explicitly the electronic
of the Markovian master equation, in terms of Redfield gegrees of freedom for the environment species, which are

18,4143 i “indi " L . .
Fheorly. = The physical effects we focus qun <|51re indirect”,  assumed to remain in their electronic ground stafl In
i.e., fluctuation-induced, transitions between the electronic states, i cinle the interaction Hamiltonian should be formulated for

afs d""?”,as Ylk;)ratl%pal znd e(:eqtro[\;c dephastmgf.l Tthe prf(;blei-m an antisymmetrized direct-product basis of electronic states
8 etlrllr?gf_a_tsor tlng _ounf tz?]nes odpre\t/en retiec |%n_e elc SdA{|n5I]]EnS|®|n§g|}, whereA is the antisymmetrizer which
ue to the Tinite extension of the coordinate-space grd IS solve guarantees that the electrons of the combined molecule-plus-

by int_roducing a “spontaneous emission” process localized i_n environment system obey fermion exchange symmetry.) We
Cootr(.:ima}te SD‘icet’ SkUCh tlhat a lcomr::le‘;ﬁ damg'gg ofdthe denSItyWiII choose as the “system” coordinatg the internuclear
ma r'_X elements takes place (?ose 0 the grid bounaary. distance in the diatomic molecule, whilge denotes all relative
This model for the electronic two-state system allows us 10 cqordinates between the diatomic and the environment species.
study the competition between coherent and incoherent, i.e., The electronic basis statéS} may be chosen to correspond
fluctuation-induced, mechanisms of electronic coupling, as well to the diabatic or adiabatic representation (see below). The
as the role of dephasing. Several scenarios are studied, one ofinetic-energy operatof® refers to the nuclear kinetic energy
which corresponds to periodic Landadener-type crossings  throughout and may have off-diagonal elements depending on
similar to those observed for N&t? while another represents  the chosen representation.
an example of purely “incoherent” electronic coupling. The  The numerical calculations presented in this paper are carried
latter leads to environment-induced electronic transitions in the gyt in the diabatic representation for the two-state Hamiltonian
Markovian-limit dynamics and will be shown to provide a model of the diatomic molecule, withTS being diagonal in the
approach to the solv_ent-l_nd_uced predissociation,ofNotice electronic statesf[ﬁm = —h2A./(2u) dnmwith the reduced mass
here that the Mark_owan limit represents th_e most ex_tre_me caseﬂ and the Laplaciar,, while off-diagonal potential couplings,
as far as destruction of coherent dynamicharacteristic of

o - ; V2 (rs), may occur. These diabatic coupling matrix elements
wavepacket dynamics in the isolated systamconcerned. A n{) y pling

L o . e X may be due to spinorbit interaction or other system-intrinsic
more realistic description, allowing for similar time scales of couplings, or possibly to an average coupling due to the
system and environment evolution, will tend to conserve gnironment, within a “reduced dynamics” descriptidn(No-
coherence on a longer time scale. Such non-Markov|an tice that the diabatic basis is defined here in a loose sense; for
approacheg have recently been pursued by Tanimura and, yiscyssion of this issue, see, for example, refs 44 and 46.) On
Murayamé? as well as Coalson and co-workéfsHowever, — giayonaiization of the potential-energy part, the BeBppen-

:he Marrowan trearmer;t Pf?)’r'?es ‘,",1 convenient gest?rlptlon N heimer or adiabatic potential-energy surfaces are obtained, with
erms of energy relaxation (il-type” process) and phase, or me(rs) = me(rs) Onm These may feature, in particular,

cpherence, relaxa_tion_ (2Ftype” process_). .SUCh classificatio_n avoided crossings due to the off-diagonal matrix elements of
gives ; userf]ul gwdell:;\e |Ior _the tdestcrlptl?n of the d);nalrlnlcs, the diabatic representation. In the adiabatic representation, off-
fvenir doug a non-Markovian treatment may eventually be diagonal terms occur in the kinetic-energy part, which involve
equired. _ _ _ first and second derivatives in the nuclear coordinates. For an
The plan of the paper is as follows. Section 2 gives a short glectronic two-level system and a single nuclear coordinate

description of the system and specifies the interaction with the the two representations are related by the unitary transformation
environment. Section 3 introduces the Markovian master

equation used in this work. In section 4, we point out the cosO(rs)/2 sind(rs)/2

i - U(rg =|_ 3)
relevance, in the context of the reduced dynamics treatment, of —sinf(rg)/2 cosé(rs)/2
the complex eigenvalues of the Liouvillian. Here, we also
discuss the relation of our results to the spectroscopic signal,where tar(rs) = —2Vi{rs)/[Vaa(rs) — Va(rg)], with the matrix
in the impulsive limit. Section 5 gives a description of the elements defined with respect to the diabatic representation. The
numerical method, and section 6 proposes results for severalparamete® may be chosen in the range [@] such that the
model situations. The last section gives a short discussion andiabeling of the diabatic and corresponding adiabatic states

conclusion. coincides asymptotically. Starting from the calculation in the
diabatic representation, we may derive the corresponding
2. System Hamiltonian and SystemBath Interaction guantities in the adiabatic representation using the above

transformation. Notice that the diabatic representation is often
We consider a predissociation process for a diatomic molecule more convenient for numerical implementation since the deriva-
embedded in an environment. For simplicity, we restrict the tive couplings pertaining to the adiabatic representation are in
treatment to two electronic states, one of which is dissociative. general rapidly varying functions of the nuclear coordinéfes.
The Hamiltonian for the isolated molecule may be represented For a similar reason, certain observable quantities may be related

as a matrix in the basis of electronic staf¢s™], to the diabatic rather than the adiabatic representation, as pointed
out by Domcke and co-workef$:4°
HS = Z ﬁ'ﬁm + me(rs)] |nSTn°| (1) The interaction with the environment comprises, in the general
nm=1,2 case, diagonal and off-diagonal matrix elemehi%(rs, re).
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Fluctuations in an off-diagonal coupling elemdnif, n = m, operator, i.e., trace conservation and positivity. (In fact, the
in the diabatic representation translate into fluctuations of the positivity requirement is not necessarily met by a master
energy gap A = 2|Viorx)| at the crossing pointx, for the equation in the Markovian limit. For a discussion of the

isolated molecule) in the adiabatic representation. The role of physical origin of the violation of positivity, see the recent
the off-diagonal elements will be most conspicuous in cases discussion in refs 55 and 56.) The Redfield approach is
where the interaction with the environment breaks the symmetry generally applied in the vibrational or vibronic eigenstate
of the unperturbed system. For example, in a diatomic representatiot¥*3 and yields transition rates related to the
molecule, two states of different parity are allowed to cross in spectral density provided by the environmental fluctuations. The
the isolated molecule, while the symmetry-breaking due to the semigroup treatment rather takes a semiphenomenological view
environment generates off-diagonal coupling elements. In this by introducing rate constants for different relaxation or dephas-
particular case, where the system features no intrinsic couplinging-type processes. The latter has been applied, in particular,
that may induce curve-crossing dynamics, such environment-to density matrix propagation in the coordinate representétish.
induced couplings can have a dominant effect on the time Markovian reduced dynamics offers a convenient classifica-
evolution. In this context, the solvent-induced predissociation tion of different processes and phenomena: in particular,
of I, provides an example that has been extensively discusseddephasing and energy relaxation processes are naturally distin-
in the recent literaturé&> The role of such off-diagonal  guished. This neat distinction may not carry over to the non-
couplings has further been considered in physical situations suchMarkovian case. The inherent disadvantage of the Markovian
as collisions between atomic spede® and interactions approach, basically due to the assumption of the separation of
between atoms and surfacdsin the present analysis, we will ~ “system” and “bath” time scales, is that the details of system
consider cases where such couplings give rise to “relaxation- bath correlations are essentially lost. Such correlations may
like” effects, that is, in the limit of rapid environmental be especially important if the system evolves rapidly.
fluctuations that induce transitions between the electronic states In the present work, we apply semigroup methods to the study
of the diatomic molecule. Such effects are closely related to of predissociation processes of diatomic molecules embedded
the effects of spontaneous emission that have recently beenn an environment. A representation of the density operator in
discussed in the context of curve-crossing situations in quantumcoordinate space is used, which is particularly suitable for the
optics0-52 treatment of dissociative dynamics. We center on the early-
) ) time events in the excited-state dynamics and disregard the
3. Reduced Dynamics: Semigroup Treatment dynamics due to the deformation of the solute potential by the
3.1. General Considerations. The subsystem dynamics,  solvent, along with recombination effects. In the curve-crossing
given by equations of motion for the reduced “system” density dynamics, we distinguish the effects of “direct” (or coherent)
operatorps = Trg p, with the degrees of freedom of the couplings and “indirect” (or incoherent) couplings due to the
environment integrated out by the trace g)loperation, is  environment and analyze their interference. In the simplest case,
rigorously given in terms of the generalized master equéfi®h.  syccessive LandatZener-type transitions, as encountered, for
While application of the latter may present a rather difficult example, in Naf® are found to be damped by the effects of
task, a number of simplified treatments exist that are based, inthe indirect coupling. This effect bears a close analogy with
particular, on the following assumptions: (i) A separation of the effect of spontaneous emission on Lane@ener transitions,
time scales exists for the “system” and “environment” evolution which has been recently investigaf@d®? Another scenario
(Markovian approximation), as implied by the conditibr < relates to the indirect coupling inducing transitions between
1, where4 denotes the coupling strength associated with the electronic states in the absence of a direct coupling. We further
interaction HamiltoniarHsg, andz. is the correlation time for  point to the role of vibrational and electronic coherence, which

the fluctuations in the environmental dynami¢s® Rapid can be associated with the spectrum of complex eigenvalues of
environmental fluctuations induce transitions in the “system” the Liouvillian that characterize the dynamics of the system.
whose intrinsic dynamics is much slower. (i) The system 3.2 Markovian Master Equation. The master equation
bath interaction Hamiltonian, with its general form as given in separates the temporal evolution of the reduced density operator,
eq 2,Afactorizes in terms of “system” and “bath” operafqrérs) ps = Trs p, into a coherent and a dissipative part,

and bnnr(rs) acting on the respective nuclear degrees of

freedom: Hsg = Ynm &m(rs) bnnlre)InS0ns|. Frequently, a e sl 5 @)
coupling bilinear in the system and bath coordinates (like in dt'OS Ps diss”s

the path integral approaef) or a quadratic form in the system
coordinaté®?4is assumed.

While the Markovian approximation is questionable for
systems that exhibit rapid “system” evolution in the presence . i~
of an environment evolving on a similar time scalee., the Lsos = ) [Hs: psl ©)
typical case in ultrafast molecular dynamidsis nevertheless
frequently applied, in view of the complexity of the non- and the dissipative part chosen to correspond to the Lindblad
Markovian treatment. Two principal formulations of the form 3839
Markovian dynamics are currently being used: (i) the Redfield
equationg! which are obtained by keeping terms up to second P i A~ AT _1‘ ATA ~ A ATA

L ; : Lgis¥s = Z CipsCi (CiCps+ psCiC)p  (6)
order in the cumulant expansion of the generalized master h2 2
equationt® (i) semigroup method%-4° which bear a close
analogy to Redfield theory, but are explicitly constructed such where theC; may be Hermitian or non-Hermitian (typically,
as to meet a positivity requirement on the reduced density level-shift) operators acting on the electronic and/or nuclear
operator. The semigroup property implies that the time evolu- degrees of freedom of the systéff? Notice that the symbol
tion can be determined from a differential equation {sl= L henceforth refers to the Liouvillian superoperator as well as
Lreduces, Which has to preserve the properties of the density its representation in a particular basis. In the present context,

with the coherent part involving the Hamiltonidhs of eq 1,
which may include an average systebmath coupling [Hsg[1”
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L4iss COMprises the following operators: but to fluctuations in the energy of the individual electronic
states, which induce dephasing of electronic coherence. Notice

A _ . A _ | that the overall electronic dephasing effect is composed of

Croe= 1TH2] yT3p(7); Co o= 120y T24(F) contributions due to both electronic transitions and “pure

dephasing” (by analogy with the relation betweEnand T,

Cia=NMYTy g Copa= 2021/T,, for a two-level system, Tp = 1/(2T;) + 1/T}, whereT) is the
pure-dephasing constant). .
Ciavip= [T/ T yinf — 3. Vibrational Dephasing, Associated with,(Gp. Since

vibrational dephasing, rather than vibrational energy relaxation,
sz,vib= |202] /T pp,ip(F — 1) often provides the dominant effect in short-time dynarfiics,
. we restrict the analysis to the dephasing effect. In the master
Cyz.e1 = IXI2|y/Tyo(F) (7) equation, the operat@n.i» leads to the term-Tnnyin(r — I')2
enn(r, 1') for a given electronic state, which may be denoted
The ratesI; may be functions of the “system” nuclear “fluctuation” or “diffusion” term>8-¢1 In the absence of the
coordinate operatdr = fs, in the same fashion as a potential associated friction ternf$; %! no energy relaxation takes place,
operator; for clarity, the coordinate argument is explicitly but the system approaches an infinite-temperature limit. (As
indicated as an operator. The dephasing rBtgs and i pointed out in ref 59, the dephasing term considered here yields
are chosen to be coordinate-independent, but the operatorghe simplest type of master equation for an oscillator that is
associated with the latter are linear in the coordinate operatorcompatible with the Lindblad form, without, however, taking
f. The operator€iz e and Coy e interconnect the electronic  into account energy dissipation.) In the present model, this does
states 1 and 2Cy, ¢ refers to a numerical device that involves Nnot pose a problem, since the other mechanistimslirect”
a “spontaneous emission” process from the dissociative statetransitions and loss of density due to predissociatiead to
|20to an auxiliary statéX(] This device serves to implement an overall loss of energy, possibly apart from a very short
“absorbing boundaries” in the predissociation scenario under transient phase.
study. In the following, the physical processes associated with ~ Let us comment shortly on the form of the dephasing term.
the above operators will be discussed in some detail. It can be derived from the part of the systelyath Hamiltonian
. “Indirect’ Electronic Transition Processes Mediated by diagonal in the electronic states, with a coupling bilinear in the
the Environment, Associated withge, n= m. Such processes  “system” and “bath” coordinate&y (rs, re) = Si&(fs — rg) x
stem from the presence of off-diagonal coupling terrﬁﬁ (fs — rBO). This coupling is of the conventional form and can
with n = m, in the systemrbath interaction Hamiltonian of eq  be interpreted in terms of a Taylor expansion about the
2. In the present context, the transitions are assumed to beequilibrium positionsrg andr'B’0 for coupled oscillators. The
driven by thermal fluctuations in the environment. Hence we parameters? associated witl€,,yi» then correspond tcd for a
should expect such transitions to take place predominantly in given electronic state. The dephasing gives rise to the decay
the vicinity of the (avoided) crossing. We assume here a of the coordinate-space coherengggr, r'), r = r', with a
Lorentzian dependence of the transition rate on the coordinate-quadratic dependence on the distafice- r'|. This implies
dependent energy gape(r) = To/([AVi(r)/A]2 + 1), where that “decoherence” first sets in at large distances. For wave-
AVi(r) = (V1u(r) — Vao(r)), and4 is a parameter that defines  packet motion, for example, one should estimate the effect of
the width of the distribution (which may be associated with the the dephasing term on a scate— r'| pertaining to the width
spectral density of the environment). The larger of the “up” of the wavepacket. Notice that the vibrational dephasing

and “down” ratesI'15(r) and I'a(r), is identified with Te(r), operator, as defined here, also affects the electronic coherence
while the other is adjusted according to the detailed-balance p.r, r'), n = m (see below).
condition 4. “Spontaneous Emissiomo a Third, Auxiliary StatgXC]
Associated with’ e This represents a numerical device to
I',(r) AV,(r) implement “absorbing boundaries” for the dissociative electronic
I'p(r) “ON T kT (8) state involved in the predissociation process. Since we simulate

the dynamics on a finite coordinate-space grid, reflection and
wrap-around effects at the grid boundary introduce artifétcts.
This type of coordinate-dependent rates associated with The problem is solved here as follows: An emission process,
Lindblad operators involving electronic transitions have been localized around the grid boundary with a suitable envelope
recently applied by Saalfrank and KosRSfin the context of function, takes place from the dissociative electronic sfaite
photoinduced desorption processes on surfaces. The Appendixto a third statd Xl The form of the Lindblad operatdx; ¢
gives an alternative approach to the problem, based on theguarantees that both the population of the dissociative atate
Redfield equation$:1® The latter approach offers some physical electronic coherences between the nonadiabatically coupled
understanding of the coordinate dependence of the relaxationstates are damped efficiently (cf. the matrix representation of

operators, based on a simple model for the systbath the Liouvillian given below). The method effectively simulates

interaction. A master equation is obtained that is similar but the dissociative (“Hilbert-space”) continuum in terms of a

not identical to the Lindblad form of eq 6 with;, ¢jandCy1 et dissipative (“Liouville-space”) continuum localized in coordinate
2. Electronic*Pure Dephasinty Associated with e This space. The numerical implementation is discussed further in

process is related not to transitions between the electronic statesection 5.

3.3. Matrix Representation of the Liouvillian: The Roles of “Direct” and “Indirect” Coupling. The present section provides
a short discussion on the effects of “direct”, or coherent, coupling intrinsic to the system, and “indirect”, or environment-induced
coupling arising from the dissipative part of the Liouvillian. Since the matrix representation of the Liouvillian is best suited to
distinguish these effects, we give here the representation in the basis of (diabatic) electronic coherences and pdplLi&tipns,
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|2002], [XIIX|, |102[, |20[}. The population of the auxiliary stat¥[lis included since it allows one to consider the effect of the
operatorCyy; notice that no electronic coherences arise involving this state. The coherent and dissipative parts of the Liouvillian
thus take the following matrix form:

L{r,r)=-— Iﬁ X
=R/ (2u)(Ar — Av) 0 0 ~Va(r') Vaa(r)
+(Var(r) = Vaa (')
0 =h*/(2p)(Ar — Ap) 0 Va(r) —Vaa(r')
+(Vaa(r) — Vaa(r'))
0 0 0 0 0 9)
—Viz(r') Via(r) 0 —1/(2u) (A, — Ay) 0

+(Via(r) = Vaa(r'))

Vailr) ~Vau(r) 0 0. —h2/(2p) (A — Ar)
+(Vaa(r) = Via ()

n_ 1
Laisdror) T X

—‘%{I—‘Zl (T‘) -+ Fgl (T") Fu(?‘) Fu(?"') 0 0 0
+1100(r — )%}
—-%{Fu(?") + Fu(?"')
‘\/ F21 (7") Fgl (7"') +F22,m'b(7" - 7")2 0 0 0
+Fx2(’l’) + FXQ(T’)}
0 FXQ(T) FXQ(TI) 0 0 0
(10
-%{FZI(T) + F12(T'I)
+Fx2(7“')
0 0 0 Fl 1100 + Do er 0
+T 110 (r = 79)°
+T0i0(r" —19)%}
—%{Fle(r,) + Flg(T)
+FX2(T)
0 0 0 0 +l1,e + Dozet
+F11,m'b(7"' - 7”(1))2
+T 92 uin(r — 79)%}

From the form of the LiouvillianLs, it is evident that the  coupling constan¥:. ), it may be more adequate to choose the
coupling element¥1, = V1 connect populations with coher-  adiabatic basis for the dissipative part of the Liouvillian. Within
ences, such that population transfer occurs as a second-ordethe short-time propagation scheme, a switch of basis between
process. In a semiclassical approximation, this leads to thethe coherent and dissipative evolution steps is easily accom-
Landau-Zener formul&84for the transition probability between  modated (see section 5). A substantial difference for the
the two electronic state®]; = exp[—27V2,/(hv|F2 — Fy|)], dissipative evolution arises, in particular, if electronic dephasing
wherev denotes the velocity of the classical particle (or average is considered: Since the transformation eq 3 converts adiabatic
velocity of the wavepacket), arfel = (dVi/dr) are the slopes of  populations into a linear combination of diabatic populations
the diabatic potential curves at the crossing. and coherences, the latter will be strongly affected by a large

Conversely, the “indirect” coupling causes direct transfer dephasing rat€nne;, which translates back into a decay of the
between the populations. Further, it acts as a quenchingadiabatic populations.
mechanism on the electronic coherences, which may be .
enhanced by the presence of “pure dephasing” dugt@ as 4. Liouvillian Spectra and Observable Quantities

well asT'nnyvib. Notice that the “spontaneous emission” process 4.1, Coherent and Decay Dynamics: Complex Eigenval-
associated with the operat@, also acts on the electronic  yes of the Liouvillian. Fundamentally, the time scales char-
coherence. acterizing the coherent and decay dynamics of the system can
The above form ol is equally valid for theadiabatic be captured in terms of its resonances, i.e., metastable states
electronic basis. In fact, if the system under investigation is of with finite lifetimes. For example, for an isolated molecule
adiabatic rather than diabatic character (i.e., involving a large undergoing predissociation, we may identify quasi-bound states
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coupled to a dissociation continuum. Such resonance states arélissipative rates affect not only the decay but also the real parts

associated with complex energies = E; — iI'/2 that may

be identified by a number of different methods such as projection
operator technique®,complex scaling and other numerical
technique$s

of the complex eigenfrequencies (see, for example, ref 40, where
examples referring to few-level systems are discussed).

In the context of the numerical analysis, we will split up the
above expression in terms of correlation functions for the

In contrast to the above expression for the resonances in theindividual electronic populations or coherencé&Xt, to) =

Hilbert-space description, the complex eigenvalues in the
Liouville-space description correspond to frequencigs =
wnm — iynm If we transpose the results for the isolated
molecule to the Liouville-space description, we have, =

(Ex" — Ex) andynm = (I'n + T'y)/2. If the interaction with an

environment is added, further decay processes arise, which

cannot be accommodated in a Hilbert-space description. Within
the reduced-dynamics description, i.e., for a Liouvillian=
Ls + Lyss We may consider the basis of eigenstates of

i
h
with the Liouville-space ke#d |¢pnpml= |pnlidm|, given the
eigenstatesp,of the HamiltonianHs. Notice that a basis of
generalized eigenstaf@<? is required for a non-Hermitian
Hamiltonian or Liouvillian; however, in the present discussion,
we do not explicitly indicate the distinction between left and
right eigenvectors. Using the representation in terms of the

Liouville-space basis defined above, the following expression
for the Liouvillian including dissipation is obtained:

il i
L= z |¢”¢mm{ _g[wnm - E(rn + rm)]} Uip, Bl +
> 3 0t Lasdma ] (12

L obn = —5 |0h = 50+ To)| 19800 (11)

Diagonalization of the overall Liouvillian yields a new basis
|%;Mwith eigenvalues—i/ﬁ(a)jr — iyj). Hence, we obtain for
the propagatod(t,ty) = explL (t — ty)],

u(t, ty) =

ot to)zUCj DIEX% _%[wjr —iyl(t— to)} Dyl (13)
]

whered(t, to) is the Heaviside function imposing forward-time
propagation.

If we consider the time evolution of the system, starting from
an initial density operatop(to), we may infer the spectrum of
complex eigenvalues of the Liouvillian from the correlation
function

C(t, ty) = Tr{p'(ty) A} = Tr{p(ty) ALY}

=Zﬂmmwﬁ+#¢—waﬂ# (14)

Zr‘l,anm(t, to), with

Conlts o) = Tr{ Pmrlte) Ponl®} =
Jdr dr o r, 15 ) pnlr', 15 1) (15)

where thepnm are operators only with respect to the nuclear
coordinates. This procedure may be useful to distinguish
between vibrational and electronic (or vibronic) coherence,
which may be associated with rather different frequenaigs

in particular cases. For example, in curve-crossing systems that
are of strongly adiabatic character, i.e., with a relatively large
energy gap between the adiabatic electronic states, it may be
feasible to distinguish between the vibrational coherence
pertaining to a given electronic state and the vibronic coherence
that is the signature of the coupling between the electronic states
(see section 6.2.).

4.2. Observables and Quantities Characterizing the
Dynamics. This paper focuses on a description of the excited-
state dynamics, that is, on the time evolution of the density
operator on the two electronic surfaces involved in the curve-
crossing scenario. We monitor the correlation functions of eq
15 as well as the electronic populations and coherences in the
diabatic and adiabatic representations. The relevant quantities
are the norm for a given electronic state {pni(t)} =
Jdr pnn(r, 1; t), i.e., the integral over coordinate-space popula-
tions, as well as the quantities

1ol () = [T Pro® B} (16)
with Tr{ pmn(t) pn(t)} = Sdr dr’ pmd(r, 1'; t) pae(r’, r; t). The
two expressions are equal only for a pure state. Further, one
may consider the expectation values of the coordinates and
momenta for the individual electronic states{Xpn} and T§-
{Ppnr}, Which leads to a phase-space picture of the dynamics.
Since the numerical simulations presented here do not account
for the excitation and detection process pertaining to a pump
probe-type experiment, the conclusions we may draw on the
spectroscopic signal are limited. However, the excited-state
density operator is of direct relevance to the signal in the
impulsive limit, i.e., assuming that the laser pulses have an
extremely short duration on the time scale of evolution under
the molecular Hamiltonian. Recent work by Domcke and
Stock445in the context of curve-crossing dynamics has shown
that the results pertaining to the impulsive limit are generally
in good agreement with exact calculations. Hence, the following
subsection gives a short account, following Tanimura and
Murayama2 Mukamel and co-workerd, and Domcke and

This correlation function is real and nonnegative, as can be seerStock?* of the spectroscopic signal for pumprobe experi-

for pure states by noting th&l(t, to) = |@(to) w(t)OR. The
extension to mixed statgs= ) npn|wnly| yields, in a similar
fashion,C(t, to)) = 3 nmpPnPml @n(to) ¥wm(t)OR. In section 6, we

ments in the impulsive limit. Against this background, we
discuss the relevance to the experimental signal of the quantities
observed in our simulations. Besides the excited-state popula-

will discuss numerical examples of Fourier transforms of tions, electronic coherence between the nonadiabatically coupled
C(t, to) yielding spectra that can be associated with the complex states is shown to contribute to the signal if both states have
eigenvalues of the Liouvillian. The spectra are structured if nonvanishing dipole moments with respect to the state accessed
discrete vibrational or vibronic transition frequencies are by the probe pulse.

involved and feature a broadening due to the decay gids 4.2.1. Spectroscopic Signal: ImpulsiLimit. The central
principle, one may numerically extract the underlying resonances quantity to be calculated in the context of a punguobe
from such spectra. We should generally expect that the experiment is the time-dependent polarization of the sample
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induced by the probe pul$é#*which reads as follows in the
impulsive limit3244

Py () = IM[e"** Tr{fig, pe(0)}] (17)
with a phase factor ex{@.7) involving the carrier frequency
Q, of the probe pulse that is applied at tihe= 7, the dipole
moment operatofiep = ﬁ;rp + flep = ted|€Ip| + |ple]), and

the optical coherencgedt). Here |edrepresents the excited
electronic state the evolution of which is to be monitored by
the experiment, anfblis the state accessed by the probe pulse.
The latter coincides with the ground stageifor a stimulated-

Burghardt

coordinate representation. Since we do not consider the
interaction with the electromagnetic field, the propagator is time-
independent (but notice that the short-time propagation scheme
can be easily extended to a time-dependent propagator),

U(T) = exq(l—coh + Ldisg‘[} (21)

with L., = Lg and Ly, given by eq 10 in the coordinate
representation. A “split-propagator” scheme is used, according
to which/273

U(T) = Ucoh(T/Z)Udiss(T)Ucoh(le) + 0(73) (22)

emission process. In the above expression, the electromagnetic, 1+ is valid in Liouville space like for ordinary Hilbert-

fields pertaining to the pump and probe pulses have been set tospace operators.

Epumdt) = 0(t) and Epropdt) = O(t — 1) for simplicity.

Different contributions to the optical coherengg(t) may
be distinguished. One contribution arises from populatjgs
that have previously evolved on the excited-state potential
energy surfacél32:44

1) = exp{ Lot — 0} [PedT)ited

wherel,, refers to the molecular Liouvillian including dis-
sipation according to eq 4, but excluding the external field.
Another contribution, occurring along with stimulated emis-
sion in the casé= |gCinvolves the part of the density operator
that has remained in the electronic ground state prior to the
probe pulse. This contribution is associated with a resonance

~[ee

Pep (18)

Raman process that reduces to simple probe absorption from

the stationary ground stafgg in the impulsive limit31:32:44

I®) = exp{ Lot — D)} [Uapydl (19)

Still another contribution is to be expected for a curve-crossing
scenario, in the case where both electronic states involegd (
and [f} have nonvanishing dipole momenis, and g, with
respect to the statipl

ey

PEN (1) = exp{ Lot — )} [Pei(@ity]

The latter contribution can be understood as arising from
coherence transfdoetween the electronic coherergg gener-
ated by the coherent coupling between the stégand |f[]
and the coherencge, detected by the probe pulse. This
contribution accompanies the “direct” one involving
[ﬁff(r)ﬁfp], which is analogous to eq 18. These terms should
be relevant if the probe field is nearly resonant with both states.
The contribution of eq 20 apparently has not been considered
in the literature so far.

All of the above contributions to the optical cohererpggt)

(20)

The component propagators are given
by U (1) = exp{Lot} = exf — ilh(7+ V )} andU (1)
= exp[Lyg}- The coherent propagator is further split up,
according to the same procedure:
Ucon(7) ~ Uyin(7/2) Upot(T) Uyin(7/2) (23)

with Uy(7) = exp(— i/hZz) and U (1) = exp(— i/AV 7).
This is entirely analogous to the Hilbert-space procedure first
proposed by Feit, Fleck, and Steigér2 The first application
to density operator propagation in coordinate space was given
by Hellsing and Metiu#

Numerically, the overall propagation is thus composed of the
following sequence:

U(N7) ~ Ugoh(t12)[UisdT) UgoD]"U Lo(@/2)  (24)
where
T

e

with the possibility of introducing different time spacings for
the potential/kinetic and coherent/relaxation parts of the propa-
gator. This is convenient in cases where the higher-order
commutator terms, which are neglected by the propagation
method, are of greater importance (hence requiring smaller time
steps) for the coherent as compared with the dissipative
propagation steps.

The individual terms are calculated as follows, in the
coordinate and momentum representations, respectively. For
the potential-energy propagation step,

Upolr, 15 7) p(r, 1) =
exp(—fl—lV(r)r) p(r, r') ex IEV(r’)r) (26)

T

Ucor(?) = Ukin(En) .

kin

where bothV andp(r, r') represent 2 2 matrices in the basis

of course carry vibrational (or vibronic) populations and of giabatic electronic states. Exponentiation of the potential
coherences. Since these can be characterized in terms of thenatrix is carried out using the analytical expressions for a two-
complex eigenvalues of the Liouvillian, as shown in the |eye| system, as proposed in ref 75. The kinetic-energy step is

preceding section, the Liouvillian spectrum eventually underlies performed in the momentum representation, in the same fashion
the observable structures in a frequency-resolved ptnpbe for both electronic states,

signal.
As pointed out by Domcke and Stoékthe diabatic, rather U, (k, K; 7) p,(k K) =

than adiabatic, populations are relevant to the observed signal, 2 K2
as may be inferred from a derivation using the Condon exr{—ih—r) Pk K) ex;{ih—r) (27)
approximation. 2u 2u

The propagators may be grouped together as suggested in ref
74.

The present work uses a short-time propagation scheme for Finally, the evolution step under is carried out in the
the numerical integration of the master equation, eq 4, in the coordinate representation. The dissipative Liouvillian is set up

5. Numerical Method
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either in the diabatic or adiabatic representation, depending on 0.1
which is more appropriate for the problem to be studied. If the a
adiabatic basis is chosen, the density operator is transformed 0.08 -
accordingly before and after the dissipative propagation step, '
using the transformation eq 3. Alternatively, one might choose
to transform the dissipative Liouvillian matrix between the — 0.06 |-
adiabatic and diabatic representations. =
The particular form of the dissipative Liouvillian of eq 10 is w 004 |

diagonal in a given pair of coordinates ('), which is due to
the fact that all of the Lindblad operators of eq 7 are local in
coordinates. Notice that, if vibrational “friction” terms were 0.02 - /

to be included, this would no longer be the case, since those
terms involve the form §, [p,p]+], where [} denotes an
anticommutatoP8-61 |n the particular case considered here, the 5 6 7 8 9 10
5 x 5 Liouvillian matrix Lgis{r, r') of eq 10 may be diagonalized rla.ul

and exponentiated, such that ¢kpsdr, r')7} = M’
exp(L 33r, r')z}M. In particular, the 3x 3 block involving
populations has to be diagonalized, while the 2 block for b
the coherences is already diagonal if the so-called nonsecular 0.08 |
terms are disregarded.

Since the auxiliary stateX[ls included only in the dissipative
propagation step, it does not give rise to much additional ';
numerical effort. The coordinate dependence of the fatgs) 9,
may be chosen rather freely, for example, using a Gaussian W
envelope centered on the grid boundary, with a half-width of
about 0.5a,. The principal requirement is that the coupling
strength is large enough to allow for a complete “emission”
once the coupling region is reached. By monitoring the norm
(Tr p) of the stateX(along with the norm of the other states, 0
one may numerically check on the conservation of the overall
population undelLqiss As may be inferred from the matrix rlau]
representation eq 10, the damping process due to the auxiliaryFigure 1. Two model potentials used in the present work. (a) Diabatic
state affects not only the electronic population of the dissociative states are given by a Morse potential and an exponential form,
state but also the electronic coherence between the stategeSPectively. FoNi(r) = Di[1 — exp(—fuy(r — r))]% the parameters
involved in the curve-crossing. In fact, the decay of electronic 27 given byDi = 0.0463au, £, = 0.8975a ", rip = 5.716a, while

. - for Va(r) = Ag exp(—Ba(r — rzo)) + Vao, the parameters are = 0.02992
coherence has to be taken into account to assure the positivityy,, ﬁ§(=) 2.%9032&[?2(0: 5.23)%358020&ndV§o= o

of the diagonal elements of the density_mz_itrix_. In the present coypling is chosen ag, = V2, exp(=[(r — rx)/o]?) with V2, = 0.002
model, where the other coherent and dissipative couplings areay, ¢ = 0.3a,°%, andrx = 6.825a,. (b) Here, the diabatic states model
localized in the curve-crossing region, correlations between the the B(Q) 3[1) anda(l, 3[7) states of 4, with parameters adopted from
“emission” process and the other interactions are not observed.Ben-Nun et al® Notice that the dissociative potential features a very
With the method described here, typical time intervaldof ~ shallow well with a minimum at = 8.48 a.
= 0.5 fs were used. The commutator terms which are neglected
by the propagation scheme were calculated exp||c|t|y for this la. This situation Close|y resembles the one encountered in
time interval and were shown to lie 2 orders of magnitude below Systems such as N&® The wavepacket shows recurrences
the terms captured by the calculation. In fact, the propagation in the upper adiabatic state, which are gradually damped by
scheme turns out to be very robust in that it yields qualitatively the loss of population each time the crossing is traversed. The
correct results even if the commutator terms are nonnegligible. second example corresponds to the same potential energy
With a coordinate-space grid of 256 points, typical overall surfaces, but a different initial condition, which represents a
propagation times correspond to a few hours, on a workstation, coherent superposition of the adiabatic states. This example
for a time evolution over 1 ps. This evidently puts a limitation highlights the role of electronic, or vibronic, coherence. The
on the grid sizes that may be conveniently handled. third case corresponds to a model potential foske Figure
Finally, let us note that other ways of partitioning the overall 1b), which has recently been applied in the analysis of the
Liouvillian are possible within a short-time propagation scheme. solvent-induced predissociation of the jggtate by Ben-Nun,
For example, the potential-energy part may be combined with |evine, and Fleming® Here, we illustrate population transfer
the dissipative part. For other recent applications of short-time due to the indirect electronic coupling, in the absence of any
propagation schemes to density operator evolution, see refs 50coherent coupling. The example again shows a stepwise

0.1

51, 76, and 77. depletion of the electronic state initially populated, very similarly
) ) o to the results obtained in the molecular dynamics approach by
6. Examples: Curve-Crossing with Dissipation Ben-Nun et alé

In the following, three different examples will be discussed ~ Note that for all examples shown in the following, the reduced
that illustrate the effects of the dissipative time evolution on mass of iodine was used in the calculations. Further, all
curve-crossing dynamics. The first example represents periodicexamples refer to a pure-state initial condition representing an
Landau-Zener-type crossings with an initial condition on the excited-state wavepacket. The potential coupling between the
upper adiabatic surface of the coupled potentials shown in Figurediabatic states was chosen to be localized in space with a
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Figure 3. Same conditions as Figure 2. Upper solid line: integrated
population of the upper adiabatic stalﬁ;g|(t). Dotted line: diabatic

b wavepacket correlation function (absolute valupi)]//g'(tq) wg'(t)Eﬂ.

Solid line: diabatic Liouvillian correlation functiorC g'z(t, to) =

Trid p3(to) ps(t)}, which is equal td@d (to) 13 (t)OP for the pure-state
case considered here. Note that the numerical agreement obtained

between the wavepacket and density matrix calculations provides a
05F : convenient verification of the latter.

0 / 1 I 1
0 500 1000 1500 2000
0.024 0.028 0.032

t [fs] Efau)

Figure 2. Time evolution of the integrated electronic populations and
coherencespmi(t) (see eq 16), for the first example system (see section
6.1.), without dissipation. The initial condition corresponds to a pure U

state p(to) = |y(to)Iip(to)|, with |y (t))T representing a Gaussian
wavepacket localized afio[l= 6.0 ao, with width at half-height fwhm

= 0.15 a,. (a) Electronic populationgpn(t)l, n = 1, 2, equal to ~ 1 I I I

Trd pne(t)} for the pure-state case. Solid lines: adiabatic representation. 0 0.001 0.002 0.003 0.004 0.005 0.006
Dotted and dashdotted lines: diabatic representation. (b) Electronic E[a.u]

coherences|p(t)] = |p21(t)]. Solid line: adiabatic representation.

Dotted line: diabatic representation. Figure 4. Liouville-space and Hilbert-space spectra. The central part

) ) ) N of the figure shows the Fourier transform of the Liouvillian correlation
Gaussian envelope function. The detailed-balance condition edfunction C di(t, to) of the preceding figure. The Fourier transform is

8 was applied foiT = 300 K. symmetrical with respect to positive and negative frequencies, and only

6.1. Periodic Level Crossings.For the first example, with the positive-frequency part is shown here. Inset: Fourier transform (real
an initial wavepacket localized @0~ 6.0 a, on the upper  part) of the wavepacket correlation functidi$(to) ¥5(t)l The
adiabatic potential surface of Figure 1a, the time evolution of Liouvillian spectrum displays differences of the energies given in the
the integrated electronic populations and coherences in theHilbert-space spectrum.

adiabatic and diabatic representations is shown in Figure 2. It o i
is clear that the adiabatic representation is more appropriate,€ complex periodic orbit that alternates between the two
surfaceg?) The Liouvillian correlation function is given by

while a complete population transfer between the diabatic states™" . di di i
takes place each time the crossing is traversed. If we describeC 22t to) = @5 (to) 17 ()P for the isolated system. The

the population transfer by a simple model for repeated Landau Fourier transform o€ 95(t, to), shown in Figure 4, displays the
Zener-type transitions, we expect a stepwise exponential decayvibrational coherences in the upper adiabatic state. Even though
of the upper-state population, given approximately by the generation oglectronic coherence is central to the time
exp[—P.zt/(T/2)] on stroboscopic monitoring at each half-period. €volution of the system, one does not observe discrete vibronic
This is confirmed by Figure 3, which shows the integrated €nergy differences in the spectrum since continuum states, rather
population of the upper adiabatic state over an extended timethan bound states, of the lower adiabatic surface are involved.
interval (5 ps). With a wavepacket period Df- 325 fs in the The effects of dephasing and of “indirect” (environment-
upper state, we obtain the LandaZiener transition probability ~ induced) electronic transitions are shown in Figure 5. The
Pz ~ 0.09. Figure 3 also shows the Hilbert-space correlation dissipative part of the Liouvillian has been calculated in the
function in the diabatic representatigfipdi(to) 1di(t), which adiabatic representation, which is most appropriate to the present
is expected to trace out a decay envelope similar to the adiabaticexample. The decay constants are chosen to correspond to a
populations, given that the resonances in the upper adiabatictime scale shorter than the decay witk= P, z/(T/2), but longer

state approximately decay with half-widih= P Z/(T/2). (This than the LandattZener time scale z ~ 50 fs, which gives a
result may be derived semiclassically from the properties of measure of the time interval the wavepacket spends in the
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. o . . Figure 6. Time evolution of the integrated populations and coherences,
Figure 5. (a) Effects Of. md!rect transitions on _the populatl_on lpmnl(t), for the second example system (see section 6.2.), without
dY”"f‘m'?s of the upper adlabatlf: surface. () Population decay without dissipation. The initial conditions are again given in terms of a pure
dissipation, reproduced from Figure 2. (l1) Decay|p3‘§| and (II') of state, which is now localized &t,C= 6.8 a5, with fwhm = 0.15a0, on

a i P H it . . . . . . . ..
Tr{p33 in the presence of environment-induced transitions. The the dissociative diabatic surface, in the region of strong mixing between
parameter$’s = 0.000075 au and = 0.01 au determine the envelope  the diabatic states. Hence, this state represents a coherent superposition
function T'e(r) = To/([AV1(r)/A]? + 1), from which the rated1o(r)  of electronic states in the adiabatic representation. (a) Populatighs
andI'2y(r) are derived in accordance with the detailed-balance condition n = 1 2. Dashed and dastuotted lines: adiabatic representation. Solid
eq 8. Note thatpz,| = Tri{ 2} for a pure-state wavepacket as given  and dotted lines: diabatic representation. (b) Coherejpggs= [p21l.
initially. (b) Effects of dephasing. (I) Dissipation-free case, as above. Dotted line: adiabatic representation. Solid line: diabatic representation.
((OEUR! Tr,{pgg} and |p§g\, respectively, for vibrational dephasing
with rates 'y vie = I'zvip = 0.02 au;r{ and _rg occurring in the condition on the uppediabatic state in the region of strong
dephasing operators correspond to the equilibrium positions of the gtate mixing. (As an alternative to the diabatic initial condition,
adiabatic electronic states. The difference betwiges and T pzz} one might choose a wavepacket in the adiabatic representation

reflects the effect of “decoherence” that quickly destroys the initial . . - .
vibrational pure state. (Ill) Electronic “pure dephasing”, with rtee that covers the corresponding bandwidth. This, however, entails

= I';ze= 0.1 au, which quenches the LandaZener transitions and @ Strong participation of continuum states, which is avoided here

thus slows down the decay of the population{Fi% (Tr {033} = for ease of interpretation.)

1029 here). Figure 6 shows the integrated adiabatic and diabatic popula-
tions and coherences, in an analogous fashion to Figure 2. The

crossing region. This time scale is given by = Il z/v = state preparation is such that almost no perceptible decay occurs

Alv|F, — Fq],5%%4wherel, ; denotes the width of the crossing for the upper electronic state. This is due to the fact that only
region andA = 2|Vii(rx)| is the energy gap between the the lowest two vibrational levels of the upper-state manifold
adiabatic states. Figure 5 shows that the “indirect” transitions are accessed, which decay much more slowly than the higher
lead to a rapid depletion of the upper adiabatic state, while the vibrational levels that constitute the wavepacket of the first
lower state gains in population. Vibrational dephasing does not example’! From a semiclassical point of view, the upper-state
substantially affect the decay of r1’;)§g(t)}_ However, “pure preparation chosen here imparts very little kinetic energy to the
dephasing” of the electronic coherence that mediates thewavepacket, which renders the semiclassical behavior strongly
Landau-Zener type transitions may slow down the decay. adiabatic. Considering the diabatic representation, notice that
6.2. Vibronic versus Vibrational Coherence. The second no complete swapping of populations takes place, as in the first
example is chosen to illustrate under which circumstances example; we rather observe Rabi-type oscillations, with fre-
electronic coherence can be observed in terms of discretequency components of the order of the electronic energy gap,
vibronic frequency components. The example refers to the samewhenever the crossing is traversed.
potential energy surface as above, but the initial condition now  Figure 7a shows the Liouvillian spectrum obtained by Fourier-
represents a coherent superposition of the adiabatic stategransforming the diabatic correlation functi@rﬂ'z(t, to), along
centered aroundrol]= 6.8 a, corresponding to an initial  with the Hilbert-space spectrum. The contribution due to the
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Figure 8. Liouvillian correlation functionsC ;‘;(t, to) in the presence

b of “indirect” electronic transitions (solid line) and vibrational dephasing
(dashed line). The rates are constructed as described in Figure 5, with
I'o = 0.0002au and I'11,ib = T'22vip = 0.0001au. The decay of the
upper adiabatic state is barely accelerated by the dephasing effect, such
that oscillations persist for a much longer time than in the case where
“indirect” transitions are involved.

o f' b

1 1 1 1 b
0 0.002 0.004 0.006 0.008 0.01

E[a.u.]

Figure 7. (a) Fourier transform of the Liouvillian correlation function
C g'z(t, to) for the system described in the preceding figure. The
correlation function (not shown here) was sampled over a time interval
of 5 ps and shows barely any decay over this interval. The Fourier a
transform was obtained after suitable apodization. Inset: Hilbert-space L L L L
spectrum obtained from wavepacket propagation. Notice that the initial 0 0.002 0.004 0.006 0.008 0.01
condition samples the vibrational manifolds of both the upper and lower E[a.u.]
adiabatic states. Therefore, vibronic coherence is clearly distinct in the )
Liouvillian spectrum. (b) In contrast to part a, the Fourier transforms Figure 9. Fourier transform ofS dy(t, to) for the dissipation-free case
of theadiabaticcorrelation functions are shown: (I) Fourier transform (see Figure 7) as compared with the conditions of Figure 8 (both
of the correlation function for the lower adiabatic sta&<(t, to); () environment-induced transitions and dephasing lead to a similar
Fourier transform of> 33, to); (Ill) Fourier transform ofC 3, to). | “washing out” of the vibronic structure).
and Il display thevibrational coherence within the adiabatic electronic  transient dichroism experiments, reported a decay wit#80
states, while IIl displays theibronic coherence in the adiabatic basis. {5 i liquid hexane, while Xu et & concluded on the grounds

) . ) ) ) of resonance Raman experiments in £@hkt the process was
vibronic coherence is clearly separated in the high-frequency eyen more rapid, on the order of 50 fs. Zewail and co-workers
part of the spectrum. This separation becomes even more,nqertook a series of detailed investigations aimed at capturing
transparent on considering the Fourier transforms of the adiabaticig transition between gas-phase and liquid-phase dynamics.

correlation functionsC {4t, to) in Figure 7b. For an experi-  For Ar and Kr as solvents, coherently oscillating signals are

mental-state preparatlon similar to the one chosen here, Vibronicfound ata pressure of 100 bar’ but the coherence appears to be
coherence should thus be observable. For recent discuss,iongtmng|y quenched at 400 bar. For Ne and He, by contrast, an
on the issue of observability of electronic coherence, see refs gscillatory transient signal persists for about 5 ps up to pressures
78 and 79 Figure 8 i||UStrateS the effectS Of "indil’ec’[" of 2000 bar_ Experiments on Cryogenic matrixes were per_
transitions versus Vlbl‘atlona| dephaSIng on the Liouvillian formed by Apkarian and Co_Workef'gyho observed very |0ng_
correlation functionC 94(t, to). The former effect again leads |ived coherent transients fos embedded in a Kr matrix.
to a rapid depletion of the upper adiabatic state, whereas the A number of theoretical interpretations have been suggested
latter tends to preserve the upper state population while exertingusing, in particular, mixed quantum/classical approaches to the
a damping on the vibrational (and electronic) coherence. Figure simulation of the combined solute-plus-solvent systérif By
9 shows the associated Liouvillian spectrum. contrast, a “reduced-dynamics” treatment has not been proposed
6.3. Environment-Induced Predissociation: Example 4. as yet. In this context, the purpose of the present contribution
The predissociation oflin its BOI state has been subject to is not to give a detailed master equation analysis of the
extensive experimental and theoretical investigation over the predissociation of, but rather to point out that the approach
past few years. While the B state is very long-lived in the gas presented here in principle accommodates the treatment of the
phase, the predissociation process is found to be extremely rapidsolvent-induced dynamics. Recall from section 3 that the
in the condensed phase and in clusters. Scherer ®using definition of the “indirect” electronic transitions is based on an
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surface. The stepwise depletion of the initial state, as observed
in Figure 10, is in correspondence with the results by Ben-Nun
et all® In contrast to the preceding examples, no electronic
coherence is involved in the time evolution. Hence, a qualitative
description may not be given in terms of the Landaener
model. (However, the LandatZener model may in principle

05 k1 e, be extended to include an imaginary coupling term that accounts
i e for the indirect mechanism of population transfér9)

1

7. Discussion and Conclusions

Lo The examples given above all refer to cases where the decay
Sea el time scales are of the same order of magnitude, but somewhat
0 00 1000 ""1"50 o 2000 2500 longer than_ the_coherent time scales characterizing the wave-
packet motion, i.e., the wavepacket peribd- 300 fs and the
t[fs] Landau-Zener time scale, z ~ 50 fs (see the first example).
Hence, coherent motion is still observable, and the spectra
associated with the complex eigenvalues of the Liouvillian show
vibrational, or vibronic, structures. Notice that the frequency
components occurring in such spectra are in direct cor-
respondence with those observed in purppobe spectra in the
impulsive limit, as discussed in section 4.2. It might be
interesting to extract explicitly the resonances underlying these
spectra, which should yield lifetimes in the femto- to picosecond
range. We have shown that in certain cases the vibrational and
vibronic contributions to the spectrum may be clearly separated.
The decay behavior observed in the above examples is not
T generally exponential. The simulations show thas is to be
o expected-incoherent electronic transitions lead to a rapid
0 L L L L depletion of the upper electronic state, while electronic “pure
0 500 1000 1500 2000 2500 dephasing” may preserve the upper-state population for a longer
t [fs] time. Note, though, that conservation of the upper-state
Figure 10. For the model potential o I(Figure 1b), the populations ~ POPulation may also be due to strong collisions that cause a
of the diabatic states are shown, for nonvanishing effects of the substantial vibrational energy loss, as shown in recent work by
“indirect” electronic transitions. The initial condition again corresponds Engel and co-workers on N&. This type of effect is not
to a pure state, localized &= 5.59ay, with a width fwhm= 0.15 included in the present analysis.

ap. Notice that the dynamics does not involve any electronic coherence The third example represents a simple model for environment-

in this case. (a) Population of the bound diabatic statgf,of, for - " i
parameterd' — 0.00001 au (solid line)[o — 0.0001 au (dotted line), induced transitions of dissipative character, for a model

T = 0.001 au (dashed line), arfth = 0.01 au (dashdotted line), representing the BDand a} states of 416 The population
respectively. The parameter which determines the coordinate depen-transfer via “indirect” transitions is very pronounced in this case
dence of the rates was chosen as abdves 0.01 au. Notice that since the crossing occurs close to the minimum of the bound-
Tr{pd} = |yl throughout. (b) Effects of vibrational dephasing. For ~ state potential well, which is very shallow. Recall that this
T'o = 0.00001 au (f) and’o = 0.0001 au (II) of the preceding figure,  example does not involve any electronic coherence. A more
vibrational delghasm_g 1S adgl_ed_ with ratg vie = I'2zvp = 0.002 au realistic treatment of this system, involving the investigation
(I', 1I") show|py, |, whileTr{ .} is barely affected by dephasing. The 4t the coupling Hamiltonian and the treatment of non-Markovian
effect of “decoherence” is thus very similar to Figure 5b. effects, is currently in progress in our group.
interaction Hamiltonian which is off-diagonal in the electronic To summarize, the master equation approach presented in
states of the solute species. A detailed analysis, beyond thethis work gives a qualitative picture of the influence that a
parametrization used in the present context, would entail (i) dissipative environment may exert on a predissociation process.
setting up the interaction Hamiltonian as a function of the we have focused on examples illustrating the role of dephasing
intermolecular (and intramolecular) coordinates, for several and of indirect (or incoherent) electronic coupling. The latter
dissociative states that intersect the_Bpotential, and (ii) effect has not been considered so far in the majority of studies
relaxing the Markovian assumption in the reduced-dynamics on curve-crossing processes including dissipaifoff, but it is
treatment, since a separation of time scales between the “systemtelated to recent investigations of the effect of spontaneous
and “bath” dynamics is not actually given. Thus, the present emission on LandatuZener-type transitions in quantum
treatment, which assumes that electronic transitions are inducedptics>%-52 In the Markovian limit, the decay of coherences
by rapid environmental fluctuations, can only offer a general and populations may be described by an appropriate param-
perspective on the problem. etrization, which is here accommodated in the framework of a
The potential energy surfaces shown in Figure 1b, represent-master equation of Lindblad type. The choice of parameters
ing the BQ and a} states of iodine, are adopted from the reflects different time scales of evolution, which are fundamen-
work by Ben-Nun et al® Figure 10 shows the integrated tally associated with the decay modes given by the complex
electronic population of the upper adiabatic state, for different eigenvalues of the Liouvillian. These should be compared with
values of the decay parameter associated with the “indirect” the “semiclassical” time scales associated with wavepacket
electronic transitions. The initial condition corresponds to a motion to interpret the observations by time-resolved spectros-
wavepacket centered dig[l= 5.59 @ on the bound diabatic = copy. Notice that the length scales associated with the wave-
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packet are also important in defining vibrational dephasing in and ;{B‘*f is a reference state for the environment, usually

the coordinate representation. representing thermal equilibrium. We consider the following
The numerical approach presented in this work is based oninteraction Hamiltonian:

a short-time propagation scheme that represents a viable )

alternative to other density-matrix propagation methods in Heg = Zvn(§+aﬂ+§,a§) (30)

coordinate space, in particular, the global propagation schemes n

introduced by Kosloff and co-worke?&3* The problem of ~ R _

defining “absorbing boundaries” to avoid reflections due to the Wheres: = |2[I1| ands. = [1(12| represent level-shift opTerators

finite extension of the coordinate-space grid has been solvedfor the electronic levels of the molecule, whitg and &, are

by introducing an emission process to an auxiliary state, posonic anr)ihilation and creatiqn operators fpr the_bath which

localized near the grid boundary. This method turns out to be is modeled in terms of a collection of harmonic oscillatéts,

very robust and represents an alternative to the use of the Wigner= Ynknaian. The “unperturbed” Hamiltonian is given By =

representation in defining the behavior of the density matrix at Hs + Hg, and the associated Liouvilliay, is defined accord-

the boundary? ingly. The rotating-wave approximation is made here, implying
Finally, let us remark that a more microscopic treatment of that only resonant terms contribute to the interac#fon.

the ultrafast decay processes under consideration would entail As an alternative form for the interaction Hamiltonian one

taking into account non-Markovian effects, which should capture May chooseHsg = (8 + 5-)b(Tinter), Whereriner collectively

the actual solutesolvent dynamics that evolves between the denotes the relative coordinates between the diatomic and the

static (“inhomogeneous”) limit and the Markovian limit of rapid ~ €nvironment species. Note that both forms of the Hamiltonian

fluctuations. It is planned to extend the present study to the imply that fluctuations in the “bath” coordinatege give rise

non-Markovian case, which should allow an interesting com- 0 electronic transitions via the level-shift operators for the

parison with recent work by Tanimura and Murayém well "System”. The two model Hamiltonians have in common their

as Coalson and co-workets. independence of the vibrational coordinate of the diatomic, such

that vibrational dephasing and relaxation are disregarded in the
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where the following relations for harmonic oscillators were
Appendix. “Indirect” Transitions: Redfield Equations used: TE{ana'I pe% = 1/[1 — exp(—pky)] and TrB{a:%ﬁBQ} =

In this Appendix, we consider a simple approach to the 1/[€xp{ki) — 1], with the equiIiPlrium density operat@f’ =
“indirect” electronic transitions via the Redfield equations, i.e., €XPCAHB)/T[1 — exp(-pky)]™*, where the denominator
using a master equation of the type represents the partition function, afid= 1/(kT).%®

While the evaluation of the Heisenberg opera®r6-1) is

d. R R straightforward in the representation of eigenstates of the
aiPs = LsPs T Laisds “system” Hamiltonian, it is more involved in the coordinate
_ representation. However, in the particular case we are consider-
_ —l[I:| pd - ing, with the interaction Hamiltonian being independent of the
R “system” nuclear coordinate, we can derive a simple result for
1 (o A A ~refa the Heisenberg operator, which depends only on the potential
h_z ﬁ) dr Tre{[Hse [Hse(—7). pe ps(O11} (28) energy gap between the two electronic states at a given
internuclear distances. We assume here théls is diagonal
in the electronic states 1 and 2 (as well as in the kinetic-energy

whereHsg(—7) is the Heisenberg operator, L
se(~7) gop contribution),

Hse(—7) = explon)Hse As= S R (roinh = Z {(F, + V(o) InTm| (32)
i~ VA i T2 T2
= ex;{—;;tHor)HSB ex;;(}';LHor) (29) " "
Hence, we have, for example, fér = |2[11,
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5.(=7) = [exp(Ls)] 5y 24200

= exp(—lﬁﬁzr)|2tﬂl| exp('ﬁﬁlr)

and an analogous expression $o(—t). The relevant elements

of the Liouvillian propagator may be denoted “coherence Green
function”3! To introduce the dependence on the electronic
energy gapAVio(rs) = [Vi(rs) — Va(rs)], the propagator for
the individual electronic states, exp(i/i)hqt), may be expressed

in terms of the propagator for a chosen reference Hamiltonian
Pref (of the same structure as tﬁﬁ,‘s) and an interaction-frame
propagator involVingAVy ref(rs) = [Va(rs) — Viei(rs)],*

exr{—fi—lﬁnt) =

exp{—'ﬁﬁreft) exp,

(33)

i I I
— Jidt AV, o{rs t)| (34)

where “exp.” denotes the (positive) time-ordered exponential.
In particular, the Hamiltoniai; (or, equivalently,hy) may

be chosen as the referenqe Ha[niltonian to yield, for example,

for an operator of the form; = hpyrs)|200]:

h,(t) = |2 exp{%ﬁzt) Audrs) ex;{—'ﬁﬁzt) X

i I 1)
exp, 5 ﬁdt AV, (rg t')| (35)

For the particular case of the operat@tsconsidered above,
which do not depend on the nuclear coordingiewe simply
obtain

S$.(t) = |2 exp,

i I I
— [t AV g t)|  (36)

Since the time interval contributing to the integral over the
Markovian kernel of eq 28 is on the order of the correlation
time of the environment; (supposed to be substantially shorter
than the time scale of “system” evolution), we may approximate
AVirst’) ~ AVi(rs), such that

exp, —;71 fotdt’ AV, (rg t’)] ~ ex;{—%tAVlZ(rs)] (37)

This expression is bbcal operator in the coordinate representa-

J. Phys. Chem. A, Vol. 102, No. 23, 199805

explitAVirs)/h]. The master equation thus reads

LaisPs(ls I's) = _%{le(rs)[g-w S ps(rs 'l —
'8, el ' 98] = Ion(I' IS4 ps(rs: I'9)S-] +
Ioa(rgls., 5,p4(rs, '} (38)

where the spectral densitids, and J»; depend on the energy
gap at a given internuclear distangg

_ 0 gk
J,Ard =Re [dk = expCpi] |
[T exp(—;—l[k — AV,(r9le
_ I(AV,(ry))
[1 — exp(=BAVy(ry)]
9(AV,4(rg))

Jo4(r9)

~ [expBAV,(r9) — 1] (39)

Here, the sum over bath oscillators was replaced by an integral
involving a strength functior nun2 — g(k), and the time integral
was carried out formally/gdr exp[—i(k — AVii(rg))t/h] =

O(k — AVio(rs)) + iPsdki(k — AViy(rs)), where the last term
represents a principal-value integral. For details of this
procedure, see, e.g., reference 18. Notice that the principal-
value term generates a frequency shift that is not taken into
consideration here. The ratio of the rat&g(rs) and J,i(rs)
yields the detailed-balance condition eq 8.

For the alternative choice of the interaction Hamiltonidgg
= (3¢ + 5.)b(riner) (Se€ above), it is convenient to consider the
classical-limit time correlation functio(r) = b (z) b(0)[]
the Fourier transform of which yields the distributig¢k). The
latter has to be supplemented by the thermal factors occurring
in eqs 31 and 39, to yield the correct ratio between “up” and
“down” rates. For an exponentially decaying correlation
function, C(z) ~ exp(—1/tc), wheret is the correlation time
of fluctuations inb(rimer), @ Lorentzian spectral density is
obtainedg(K) ~ do(1/zo)#[K2 + (L/rc)3. This is the form chosen

tion, and hence, the Heisenberg operator occurring in the masterfor the transition rates in the Lindblad form, with= 1/z; (see

equation is local in coordinate space as w8ll(—7) = §;

section 3.2).

If we equate the spectral densitidg, andJ,; with the rates;, andI'2; associated with the Lindblad operat@s, ¢ and Czy ¢
it turns out that the terms representedZyy—(1/2)(CiTCipS + ﬁSCiTCi) agree with the corresponding terms in the Redfield equations,
while those given b)QiCi;“)SCiT disagree as far as the dependencer9andr’s is concerned. The matrix representation of the

Redfield form is given by

~53(r) + 3}

n_ 1

0 0

0 0

Numerical implementation shows that the results given by the
Lindblad versus Redfield form are very similar, but slightly

%{le(r) + 3}

%{Jm(r) + Joa(r')} —%{le(r) + J1or)}

0

0

) (40)
—E{le(r) + le(r')}

0

r\)’_'[_‘l—\ o o o

.ng(r') + Jlg(l')}

negative values may indeed occur for the diagonal elements of
the density operator evolving according to the Redfield form.
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Finally, recall that the interaction Hamiltonian of eq 30 takes

into account only the resonant interactions; that is, terms of the

form é*a: and Sa, have been omitted, in accordance with the
“rotating-wave approximation®®81 However, these “nonsecu-
lar” termg74186-81 may be of importance if the unperturbed

states are separated by small energy differences. Hence, we (58) Alicki

Burghardt

(33) Berman, M.; Kosloff, R.; Tal-Ezer, H.. Phys. A1992 25, 1283.

(34) Kosloff, R.Annu. Re. Phys. Chem1994 45, 145.

(35) Banin, U.; Bartana, A.; Ruhman, S.; Kosloff, R.Chem. Phys.
1994 101, 8461.

(36) Saalfrank, P.; Kosloff, Rl. Chem. Phys1996 105 2441.

(37) Saalfrank, P.; Baer, R.; Kosloff, Rhem. Phys. Lettl994 230,

R.; Lendi, K. Quantum Dynamical Semigroups and Ap-

have included these terms in the master equation and concludgjications Springer: Berlin, 1987.

from the numerical result that they do not have a substantial

(39) Lindblad, G.Commun. Math. Physl976 48, 119. Gorini, V.;

influence on the time evolution of the systems considered here, Kossakowski, A.; Sudarshan, E. C. G.Math. Phys1976 17, 821.

(40) Kosloff, R.; Ratner, M. A.; Davis, W. BJ. Chem. Phys1997,

The nonsecular terms are not compatible with the Lindblad form 146 7036

and, in fact, can yield “negative probabilities” in our simulations.
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